SOLUTIONS TO QUIZ \#8

ERIC PETERSON

1. Problem 1

We use the formula

$$
S=\int_{R} d S=\int_{R} \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}+1} d A=\int_{R} \sqrt{4 x^{2}+4 y^{2}+1} d A
$$

This can be most simply expressed in cylindrical coordinates:

$$
\int_{R} \sqrt{4 x^{2}+4 y^{2}+1} d A=\int_{0}^{\pi / 2} \int_{0}^{\sqrt{5}}\left(\sqrt{4 r^{2}+1}\right) r d r d \theta
$$

which transforms under the substitutions $2 r=\tan u$ and $t=\sec u$ to

$$
\int_{0}^{\pi / 2} \int_{0}^{\sqrt{5}}\left(\sqrt{4 r^{2}+1}\right) r d r d \theta=\int_{0}^{\pi / 2} \int_{r=0}^{\sqrt{5}} \frac{1}{4} \tan u \sec ^{3} u d u d \theta=\frac{\pi}{2} \cdot \frac{1}{4} \int_{r=0}^{r=\sqrt{5}} t^{2} d t
$$

These substitutions pair to give $t=\sec u=\sqrt{4 r^{2}+1}$, and substituting that into the integral gives

$$
\left.\frac{\pi}{2} \cdot \frac{1}{4}\left(\frac{t^{3}}{3}\right)\right|_{r=0} ^{r=\sqrt{5}}=\frac{\pi}{2} \cdot\left(\left.\frac{1}{4} \cdot \frac{1}{3}\left(\sqrt{(2 r)^{2}+1}\right)^{3}\right|_{r=0} ^{\sqrt{5}}\right)=\frac{\pi}{24} \cdot(21 \sqrt{21}-1)
$$

2. PROBLEM 2

We make an immediate switch to cylindrical coordinates.

$$
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}\left(x^{2}+y^{2}\right)^{5 / 2} d y d x=\int_{0}^{2} \int_{0}^{2 \pi} r^{5} \cdot r d \theta d r
$$

Now this is not so bad:

$$
\int_{0}^{2} \int_{0}^{2 \pi} r^{5} \cdot r d \theta d r=\left.2 \pi \cdot \frac{r^{7}}{7}\right|_{0} ^{2}=\frac{256}{7} \pi
$$

3. Problem 3

I like to just draw the picture, but a more systematic thing to do is to chain together the inequalities dictated by the bounds: $0 \leq z \leq 1,0 \leq y \leq z^{2}$, and $0 \leq x \leq y$ collectively become $0 \leq x \leq y \leq z^{2} \leq 1$. From here, to read off the appropriate bounds, we notice only that iterated integrals have bounds which are successively dependent upon each other. For instance, the first integral uses " $d y d z d x$ ", so y is bounded by x and z^{2}, then z is bounded by \sqrt{x} and 1 (since it is not allowed to depend upon y, and x is bounded by 0 and 1 (since it is not allowed to depend upon y or $z .{ }^{1}$ Following similar reasoning for the other integral, we get the formulas

$$
\int_{0}^{1} \int_{0}^{z^{2}} \int_{0}^{y} f d x d y d z=\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{x}^{z^{2}} f d y d z d x=\int_{0}^{1} \int_{0}^{y} \int_{\sqrt{y}}^{1} f d z d x d y
$$

[^0]Set up the integral:

$$
V=\int_{0}^{1} \int_{z}^{1} \int_{y}^{1} d x d y d z
$$

and compute:

$$
\int_{0}^{1} \int_{z}^{1} \int_{y}^{1} d x d y d z=\int_{0}^{1} \int_{z}^{1}(1-y) d y d z=\int_{0}^{1}\left(\frac{1}{2}-z+\frac{z^{2}}{2}\right) d z=\frac{1}{2}-\frac{1}{2}+\frac{1}{6}=\frac{1}{6}
$$

[^0]: ${ }^{1}$ It's more precise to say that we're picking these rewritten inequalities because, collectively, they generate the same total inequality. This is actually sort of important; hidden in this reasoning is the extra inequality $0 \leq z \leq z^{2} \leq 1$.

