SOLUTIONS TO QUIZ \#7

ERIC PETERSON

1. Problem 1

Like last week, in the presence of a constraint equation we're to apply Lagrange multipliers. Take f as in the problem and set $C(x, y, z)=x^{2}+y^{2}+z^{2}$ to be the constraint equation; then we're to solve

$$
\nabla f=\lambda \cdot \nabla C
$$

Calculating partial derivatives gives

$$
\left(\begin{array}{l}
4 x^{3} \\
4 y^{3} \\
4 z^{3}
\end{array}\right)=\lambda \cdot\left(\begin{array}{l}
2 x \\
2 y \\
2 z
\end{array}\right)
$$

Supposing that none of x, y, or z are zero, we can divide the first, second, and third equations by these respective values to get

$$
\left(\begin{array}{l}
4 x^{2} \\
4 y^{2} \\
4 z^{2}
\end{array}\right)=\left(\begin{array}{l}
2 \lambda \\
2 \lambda \\
2 \lambda
\end{array}\right)
$$

Summing these equations and applying the constraint gives

$$
4\left(x^{2}+y^{2}+z^{2}\right)=4=6 \lambda
$$

and hence $\lambda=2 / 3$. We are now in the position to solve each equation: $4 x^{2}=4 / 3$, for instance, gives $x= \pm \sqrt{1 / 3}$, and similarly for y and z. At each of these eight points, f takes the value $3 \cdot(\sqrt{1 / 3})^{4}=1 / 3$.

Now suppose instead that just one of the coordinates is zero. Because the function is symmetric, for our analysis we may as well assume that coordinate to be x, while y and z are nonzero. In this case, the system of equations reduces to

$$
\left(\begin{array}{c}
0 \\
4 y^{3} \\
4 z^{3}
\end{array}\right)=\lambda \cdot\left(\begin{array}{c}
0 \\
2 y \\
2 z
\end{array}\right)
$$

with constraint $y^{2}+z^{2}=1$. We now only need to add the bottom two equations to apply the method from the previous paragraph and conclude $\lambda=1$. Solving $4 y^{2}=2$ gives $y= \pm \sqrt{1 / 2}$ and similarly for z. At these points, f takes the value $2 \cdot(\sqrt{1 / 2})^{4}=1 / 2$. Finally, if two coordinates are taken to be zero, the constraint forces that the final coordinate take the value ± 1, and f takes the value 1 there. It follows that the minimum value of f is $1 / 3$ and the maximum value is 1 .

2. Problem 2

The function describing the distance from a point (x, y, z) to the origin is $d(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}} .^{1}$ The problem instructs us to consider the constraint function $C(x, y, z)=x^{3}+y^{3}+z^{3}$ and the level curve $C(x, y, z)=1$.

Following Lagrange's method, we calculate

$$
\left(\begin{array}{l}
x / d \\
y / d \\
z / d
\end{array}\right)=\lambda \cdot\left(\begin{array}{l}
3 x^{2} \\
3 y^{2} \\
3 z^{2}
\end{array}\right),
$$

[^0]or
\[

\left($$
\begin{array}{l}
x \\
y \\
z
\end{array}
$$\right)=d \lambda \cdot\left($$
\begin{array}{l}
3 x^{2} \\
3 y^{2} \\
3 z^{2}
\end{array}
$$\right)
\]

The first equation is only solvable if $x=0$ or if $x \neq 0$ and $d \lambda=1 /(3 x)$, and similarly for the other three equations. Again, because both f and the constraint are symmetric under permuting x, y, and z, we can break into the cases where none of the points are zero, where $x=0$ only, and where $x=0$ and $y=0$. (It's not possible for all three to be zero, since then the constraint is not satisfiable.)

If none of the points are zero, then they are all equal to $1 /(3 d \lambda)$ and hence to each other. Substituting this into the constraint, we find $x=y=z=1 / 3^{1 / 3}$, which has distance

$$
d\left(1 / 3^{1 / 3}, 1 / 3^{1 / 3}, 1 / 3^{1 / 3}\right)=\sqrt{3 \cdot 1 / 3^{2 / 3}}=3^{1 / 6}
$$

If $x=0$ alone, then y and z are again both equal to $1 /(3 d \lambda)$ and hence to each other. Substituting this into the constraint, we find $y=z=1 / 2^{1 / 3}$, which has distance

$$
d\left(0,1 / 2^{1 / 3}, 1 / 2^{1 / 3}\right)=\sqrt{2 \cdot 1 / 2^{2 / 3}}=2^{1 / 6}
$$

Similarly, there are the other two points $\left(1 / 2^{1 / 3}, 0,1 / 2^{1 / 3}\right)$ and $\left(1 / 2^{1 / 3}, 1 / 2^{1 / 3}, 0\right)$. Finally, if $x=0$ and $y=0$ both, then $z=1$ which has distance

$$
d(0,0,1)=1
$$

Similarly, there are the other two points $(0,1,0)$ and $(1,0,0)$.
Since this last group of points has the smallest distance values, they minimize the distance function globally on $C=1$.

3. Problem 3

The volume integral is set up as

$$
\int_{0}^{1}\left(\int_{x}^{1}\left(e^{x-y}-\left(-e^{x-y}\right)\right) d y\right) d x
$$

Now we just compute:

$$
\begin{aligned}
\int_{0}^{1} \int_{x}^{1} 2 e^{x-y} d y d x & =\int_{0}^{1}\left(-\left.2 e^{x-y}\right|_{y=x} ^{1}\right) d x=\int_{0}^{1}\left(2-2 e^{x-1}\right) d x \\
& =2 x-\left.2 e^{x-1}\right|_{x=0} ^{1}=2-2-0+2 e^{-1}=2 e^{-1}
\end{aligned}
$$

4. Problem 4

The region of integration is constrained by the curves $y=0, x=y$, and $x=\sqrt{\pi}$. To set up the bounds for the other order of integration, we consider first the possible x-values: they must lie between 0 and $\sqrt{\pi}$. Then, given an x-value, the possible y-values for that x-value lie between 0 and x. So, we have

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi}}\left(\int_{x}^{\sqrt{\pi}} \cos \left(x^{2}\right) d y\right) d x & =\int_{0}^{\sqrt{\pi}}\left(\left.y \cos \left(x^{2}\right)\right|_{y=0} ^{x}\right) d x=\int_{0}^{\sqrt{\pi}}\left(x \cos \left(x^{2}\right)\right) d x \\
& =\left.\frac{1}{2} \sin \left(x^{2}\right)\right|_{x=0} ^{\sqrt{\pi}}=\frac{1}{2}(0-0)=0
\end{aligned}
$$

[^0]: ${ }^{1}$ You can solve this more simply by using $f=d^{2}$, which has the same extremal behavior as d, but this is not strictly necessary.

