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1. PROBLEM 1

A point (x0, y0) is a critical point of f when ∇ f |(x0,y0)
is the zero–vector (or does not exist).1 So, to start, we

should calculate∇ f :

∇ f =
�

∂ f /∂ x
∂ f /∂ y

�

=
�

−x2+ 1
−2y

�

.

The points x0 with −x2
0 + 1= 0 are x0 =±1, and the points y0 with −2y0 = 0 are y0 = 0.

To describe these critical points, we apply the second derivative test, which requires us to calculate the quantity2

D f =
∂ 2 f
∂ x2

·
∂ 2 f
∂ y2

−
�

∂ 2 f
∂ x∂ y

�2

.

In our case, this function is given by
D f = (−2x)(−2)− 0= 4x,

which at the point (1,0) gives the positive value 4 (and ∂ 2 f /∂ x2|(1,0) =−2) and at the point (−1,0) gives the negative
value −4. According to the book, the point (1,0) is thus a local maximum and (−1,0) is neither a saddle point.

2. PROBLEM 2

Let l , w, and h denote the length, width, and height of our box respectively. We are to minimize the cost function
specified by

C (l , w, h) = 2 · l w · 8+ 2 ·w h · 1+ 2 · l h · 1,

subject to the constraint that the volume V (l , w, h) = l w h satisfies V (l , w, h) = 8. The method of Lagrange multi-
pliers instructs us to solve the equation

∇C = λ · ∇V
for some scalar λ. Inserting our definitions of C and V , we produce the system of three equations





16w + 2h
16l + 2h
2w + 2l



= λ ·





w h
l h
l w



 .

First multiplying the first equation by l , the second equation by w, and the third equation by h and then applying
the constraint V (l , w, h) = l w h = 8, we produce the new system





16l w + 2l h
16l w + 2w h
2w h + 2l h



=





8λ
8λ
8λ



 .

Ignoring λ, which is an auxiliary variable, we now see that all three quantities in the left–hand vector are equal to each
other. Equating the first two, we find l h = w h, which in terms of our original system gives 16l + 2h = 16w + 2h,
and hence w = l . The last equation of the original system then gives 4l = λl 2 and hence λl = 4 (as the other solution
l = 0 cannot satisfy our constraint equation). Applying this to the middle equation gives h = 8l , from which follows

(l , w, h) = (1,1,8).

1This is a special case of a more general condition, called “the Jacobian of f drops rank”.
2This is sometimes called the “Hessian”.
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3. PROBLEM 3

To solve an optimization problem on a domain with boundary, we have to solve two subproblems: we can opti-
mize the function on the interior of the domain using the methods of Problem 1, and we can optimize the function
on the boundary using the methods of Problem 2. (The quiz hints that Lagrange multipliers are not necessary here,
but I’m going to use them anyway. No harm in being systematic.)

For the first part, we compute

∇ f =
�

12x2

6y

�

.

The equation ∇ f = 0 is satisfied by (x, y) = (0,0) alone. This point is in the interior of the disk, so it is relevant to
us, and we should classify what sort of critical point it is. If we were to calculate the Hessian, we would find that it
is zero, and so we cannot apply the Second Derivative Test. However, it is easy enough to check this function by
hand: along the x–axis (i.e., when y = 0), it looks like the function f (x, 0) = 4x3, which has neither a minimum nor
a maximum at x = 0, and so our function is not extremized at (0,0) either.

For the second part, we will solve the equation

∇ f = λ · ∇C ,

where C (x, y) = x2+ y2 describes the constraint level curve: C (x, y) = 1. We compute:
�

12x2

6y

�

= λ ·
�

2x
2y

�

.

The second equation forces λ= 3 or y = 0, and we consider these cases separately. In the case that λ= 3, the equation
12x2 = 6x has solutions x = 0 and x = 1/2. We are thus left (together with the case y = 0 above) with the possible
points (1,0), (−1,0), (0,1), (0,−1), (1/2,

p
3/2), and (1/2,−

p
3/2) to check by hand. At these points, f takes on the

values

f (1,0) = 4, f (−1,0) =−4, f (0,1) = f (0,−1) = 3, f

�

1
2

,

p
3

2

�

= f

�

1
2

,−
p

3
2

�

= 11/4.

It follows immediately that (1,0)maximizes the function and (−1,0)minimizes it.

4. PROBLEM 3, REDUX

We can also, as indicated in the problem text, solve the boundary part of the optimization problem without
Lagrange multipliers. To do this, recall that we have a parametrization of the unit circle given by γ (t ) = (cos t , sin t ).
We are interested in the differential behavior of f , and the multivariate chain rule tells us that the derivative of f ◦γ
comes as the dot product of the gradient of f with the component-wise derivative of γ . Since γ ′ is never zero, any
zeroes of the derivative of this composite function must correspond to critical points of f .

So, we compute: ( f ◦ γ )(t ) = 4cos3(t )+ 3sin2(t ) has derivative

( f ◦ γ )′ = 6sin t cos t − 12cos2 t sin t = 6sin t cos t (1− 2cos t ).

So, if ( f ◦ γ )′(t ) = 0, then either sin t = 0, cos t = 0, or cos t = 1/2. These occur at the t–values

t ∈ {0,π/3,π/2,2π/3,π, 3π/2}.
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