Practice Math 25b Final \#2

This is a practice midterm for Math 25b. To give you the experience of a real exam, we include the following bits of information and warnings.

- Do not open the test booklet until told to do so.
- There are 10 questions on this midterm. Make sure you have all of them.
- There are two pages for scratch work included at the end.
- No outside materials are allowed for reference: no friends, no phones, no books, no notes, no pages from other exams, no wandering eyes, The only thing you may use for the duration of this exam is your pencil.
- The exam is to last 50 minutes.
- You are allowed to cite results from Axler, from Spivak, or from the classroom. (The one exception is if a question were to ask you to re-prove such a result. Stating "we did this in class" is not a sufficient answer in that case.)
- Agree to the following by signing on the blank line:

I, \qquad , am bound by the Harvard Honor Code, which I recently signed when registering for classes. Accordingly, I understand the serious consequences that would befall me if I were to cheat on this midterm. I hereby affirm that I have not cheated.

Unsigned exams will be left ungraded and the examinee marked as absent.

Problem 1. Show that if a sequence $\left(a_{n}\right) \in \mathbb{R}^{n}$ converges to some limit a, show that any subsequence $\left(a_{n_{k}}\right) \in \mathbb{R}^{n}$ also converges, with the same limit.

Problem 2. A function f is uniformly continuous if for every $\varepsilon>0$ there is $\delta>0$ such that for every $x,\|x-y\|<\delta \Longrightarrow\|f(x)-f(y)\|<\varepsilon$. (That is, whereas δ is normally allowed to depend upon ε and x, a uniformly continuous function's δ is independent of x.) Prove that if $f: X \rightarrow \mathbb{R}^{n}$ is continuous and X is a compact subset of \mathbb{R}^{m}, then f is automatically uniformly continuous.

Problem 3. If $f: A \rightarrow \mathbb{R}$ is non-negative and $\int_{A} f=0$ show that $\{x \mid f(x) \neq 0\}$ has measure 0. (Hint: Prove that $\{x \mid f(x)>1 / n\}$ has content 0 .

Problem 4. Define a vector field F on \mathbb{R}^{3} by the formula

$$
F(x, y, z)=(0,0, c z)
$$

for some constant $c \in \mathbb{R}$. Think of F as the downward pressure of a fluid of density c in $\{(x, y, z) \mid z \leq 0\}$. Since a fluid exerts equal pressures in all directions, we define the buoyant force on a $3-$ manifold M as

$$
-\int_{\partial M}\langle F, n\rangle \mathrm{d} A,
$$

where n is a normal vector to the surface ∂M. Prove that the buoyant force on M is equal to the weight of the fluid displaced by M.

Problem 5. In class, we gave the following second characterization of manifolds: a subset $M \subseteq \mathbb{R}^{n}$ is a k-manifold if and only if for each $x \in M$ there is an open neighborhood $U \ni x$, an open set $W \subseteq \mathbb{R}^{k}$, and a bijective differentiable function $f: W \rightarrow \mathbb{R}^{n}$ such that

1. $f(W)=M \cap U$.
2. For each $y \in W, D_{y} f$ has rank k.
3. $f^{-1}: f(W) \rightarrow W$ is continuous.

Find a counterexample to this claim if condition 3 is omitted.

Problem 6. Consider the spherical coordinates map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$:

$$
\left(\begin{array}{c}
\rho \\
\varphi \\
\theta
\end{array}\right) \mapsto\left(\begin{array}{c}
\rho \cos \varphi \cos \theta \\
\rho \cos \varphi \sin \theta \\
\rho \sin \varphi
\end{array}\right)
$$

In what regions of the domain \mathbb{R}^{3} is this function orientation-preserving? In what regions is this function orientation-reversing?

Problem 7. Let X be a manifold. A point $x \in X$ is a Lefschetz fixed point of $f: X \rightarrow X$ if $f(x)=x$ and 1 is not an eigenvalue of $D_{x} f$. The function f itself is a Lefschetz map if all its fixed points are Lefschetz. Prove that if X is compact and f is Lefschetz, then f has only finitely many fixed points.

Problem 8. What is the integral of the form

$$
\omega=x \mathrm{~d} y \wedge \mathrm{~d} z+y \mathrm{~d} z \wedge \mathrm{~d} x+z \mathrm{~d} x \wedge \mathrm{~d} y
$$

over the part S of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

where $x, y, z \geq 0$ and with orientation given by the outward-pointing normal? (Feel free to use either of Stokes's theorem or to compute the integral directly through parametrization.)

Problem 9. Suppose that M_{1} is an n-dimensional manifold with boundary and that $M_{2} \subseteq$ M_{1} is another n-dimensional manifold with boundary such that $\partial M_{1} \cap \partial M_{2}=\varnothing$. Demonstrate the equality

$$
\int_{\partial M_{1}} \omega=\int_{\partial M_{2}} \omega
$$

for any ($n-1$)-form ω on \mathbb{R}^{n}.

Problem 10. Suppose we have V, a finite dimensional vector space, along with $\alpha \in \Omega^{p}(V)$ and v, a vector in V. Consider the contraction of α by v, denoted $i_{v} \alpha$, which is the $p-1$ form defined by

$$
i_{v} \alpha\left(w_{1}, \ldots, w_{p-1}\right)=\alpha\left(v, w_{1}, \ldots, w_{p-1}\right) .
$$

Show that if V is any p-dimensional vector space, v is a nonzero vector in V, and α is a nonzero element of $\Omega^{p}(V)$, then $i_{v} \alpha$ defines a nonzero element of $\Omega^{p-1}(W)$, where W is the orthogonal complement of v.

