Practice Math 25b Final \#1

This is a practice midterm for Math 25b. To give you the experience of a real exam, we include the following bits of information and warnings.

- Do not open the test booklet until told to do so.
- There are 10 questions on this midterm. Make sure you have all of them.
- There are two pages for scratch work included at the end.
- No outside materials are allowed for reference: no friends, no phones, no books, no notes, no pages from other exams, no wandering eyes, The only thing you may use for the duration of this exam is your pencil.
- The exam is to last 50 minutes.
- You are allowed to cite results from Axler, from Spivak, or from the classroom. (The one exception is if a question were to ask you to re-prove such a result. Stating "we did this in class" is not a sufficient answer in that case.)
- Agree to the following by signing on the blank line:

I, \qquad , am bound by the Harvard Honor Code, which I recently signed when registering for classes. Accordingly, I understand the serious consequences that would befall me if I were to cheat on this midterm. I hereby affirm that I have not cheated.

Unsigned exams will be left ungraded and the examinee marked as absent.

Problem 1. Suppose $\sum_{i=0}^{\infty} x_{i}$ is a convergent series in \mathbb{R}^{n}. Show that the triangle inequality applies to the infinite sum:

$$
\left\|\sum_{i=0}^{\infty} x_{i}\right\| \leq \sum_{i=0}^{\infty}\left\|x_{i}\right\| .
$$

Problem 2. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be homogeneous of degree m when it satisfies the equation

$$
f(t \cdot x)=t^{m} \cdot f(x)
$$

for any scalar t. Suppose that f is also differentiable, and demonstrate

$$
\sum_{j=1}^{n} x_{j} \cdot \frac{\partial f}{\partial x_{j}}(x)=m \cdot f(x)
$$

Problem 3. Let $\left(a_{i}\right)$ be an enumeration of the rationals in $[0,1]$, i.e., $\left\{a_{i} \mid i \geq 0\right\}=\mathbb{Q} \cap[0,1]$ and each value a_{i} is distinct. Define a function $f_{k}:[0,1] \rightarrow \mathbb{R}$ by

$$
f_{k}(x)= \begin{cases}1 & \text { if } x \in[0,1] \text { and }\left|x-a_{i}\right|<10^{-i} \text { for } i \leq k \\ 0 & \text { otherwise }\end{cases}
$$

Show that each f_{k} is Riemann integrable but that they cannot each be modified on a set of measure zero to converge to a Riemann integrable function.

Problem 4. Show that a quadratic form $Q\left(x_{1}, \ldots, x_{n}\right)$ can be represented by a unique symmetric $n \times n$ matrix A satisfying the formula

$$
Q(x)=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right) \cdot A \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) .
$$

Problem 5. Let $f:[0,1] \rightarrow \mathbb{R}$ a continuous function such that $f(0)=f(1)=0$, and let $n \in \mathbb{N}$ be some fixed value. Prove there is a real value $x \in[0,1]$ such that $f(x)=f\left(x+\frac{1}{n}\right)$.

Problem 6. Let $M \subseteq \mathbb{R}^{n}$ be a manifold of the form $M=g^{-1}(0)$ for some C^{1}-function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying $D_{x} g \neq 0$ for all $x \in M$. Show that M has a consistent orientation.

Problem 7. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a local diffeomorphism if for every $x \in \mathbb{R}$, there is an interval $(x-\delta, x+\delta)$, and f restricted to $(x-\delta, x+\delta)$ is a diffeomorphism (i.e., it is C^{∞}, it is invertible, and its inverse is C^{∞}). Prove that if f is a local diffeomorphism, then its image is an open interval or \mathbb{R}, and it is in fact a diffeomorphism.

Problem 8. 1. Parameterize the surface in 4 -space given by the equations

$$
x_{1}^{2}+x_{2}^{2}=a^{2}, \quad x_{3}^{2}+x_{4}^{2}=b^{2} .
$$

2. Integrate the 2 -form $x_{1} x_{2} \mathrm{~d} x_{2} \wedge \mathrm{~d} x_{3}$ over this surface.
3. Compute the derivative of this 2 -form.
4. Present the surface as the boundary of a 3-manifold and verify Stokes's theorem as applied to this integral.

Problem 9. Suppose $U \subseteq \mathbb{R}^{3}$ is open, ω is a 2 -form on $U, x \in U$ is some point, and $S_{r}(x)$ is the sphere of radius r centered at x. Compute

$$
\lim _{r \rightarrow 0} \frac{1}{r^{3}} \int_{S_{r}(x)} \omega .
$$

Problem 10. Let V a vector space of dimension n. Prove that the wedge product map

$$
\wedge: \operatorname{Alt}^{p}(V) \times \operatorname{Alt}^{n-p}(V) \rightarrow \operatorname{Alt}^{n}(V)
$$

induces an isomorphism of $\operatorname{Alt}^{p}(V)$ with the dual of $\operatorname{Alt}^{n-p}(V)$.

