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We now use the concept of exterior algebras to define more generally the notion of derivative.
First, we will define the differential of a function df , where f is a function Rn → R. (This aligns
with our intuition as we are usually used to seeing expressions like dxi, and xi is indeed a function
Rn → R given by just looking at one coordinate.)

At each point, this should align with the total derivative. So we consider Daf , which is a map
from Ta(Rn) to Tf(a)(R), which is just isomorphic to R. Therefore, Daf is an element of the dual
space of Ta(Rn) (also known as the cotangent space).

Now, given that xi is projection onto one coordinate, Daxi (which we will call dxi as above) will
be the same. Thus dxi|a is the dual of the unit vector ei ∈ Ta(Rn)–it sends ei to 1 and ej to 0 for
all j 6= i.

Now, as Daf =
n∑
i=1

∂f

∂xi
(a)Daxi by the chain rule, we have df |a =

n∑
i=1

∂f

∂xi
(a)dxi|a. Thus at each

point a, we have a space of differentials at a, which is generated by dx1|a, . . . , dxn|a. We refer to
this space of differentials at a as Ω1(T ∗a (Rn)).

Now, we expand beyond just one point a. After all, dxi is defined at every point, not just a
single one! This motivates the following definition.

Definition. A 1-form is an assignment of each a ∈ R to a differential at a (that is, an element
of Ω1(T ∗a (Rn)), or in other words a map Ta(Rn) → R). Since at each a, Ω1(T ∗a (Rn)) is generated

by the dxi|a, every 1-form ω must be of the form
n∑
i=1

gidxi for some functions gi. That is, ω|a =

n∑
i=1

gi(a)dxi|a. We call the space of all 1-forms Ω1 (or Ω1(Rn)).

We say that ω is continuous/differentiable/Cn/etc if all gi are.

There are several operations we can apply to 1-forms.

• First, given a 1-form ω on Rn and a function g : Rn → R, we can multiply ω by g. As
above, the multiplication is just done pointwise, so (gω)|a = g(a)ω|a.
• Second, given a 1-form ω on Rn and a function f : Rm → Rn, we can find the pullback

of ω under f . This will be a 1-form ω′ on Rm, and it will be given by the property that
ω′|a : TaRm → R is the map ω|f(a) ◦Daf . Note that Daf maps TaRm to Tf(a)Rn and ω|f(a)
maps Tf(a)Rn to R, so this definition makes sense. We write the pullback as f∗ω. Note that

f∗ will be a map Ω1(Rn)→ Ω1(Rm)–the opposite direction of f . Intuitively, this is because
we dualize when defining 1-forms.

Example. Let ω be the 1-form x dx+dy. Let g(x, y) = x2+y. Then gω = (x2+y)x dx+(x2+y) dy,
as one might expect.

Now we show some nice properties of the pullback.
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Lemma. Let u : Rm → Rn be a function, s : Rn → R be another function, and ω, ω′ ∈ Ω1(Rn) be
1-forms. Then:

(1) u∗(dxi) =

m∑
j=1

∂ui
∂xj

dxj . (We can think of this as dui.)

(2) u∗(ω + ω′) = u∗(ω) + u∗(ω′).
(3) u∗(sω) = (s ◦u)u∗ω. These last two conditions may be thought of as ‘linearity’ of pullback,

as the previous is additivity and this one is (kind of) scalar multiplication, as functions
evaluated at any given point are just scalars and 1-forms are really just elements of the
cotangent space of every point.

Proof. For (1), as dxj is dual to ej in the tangent space, the dxj component is just the 1-form

evaluated at ej . Thus it suffices to show that u∗(dxi)(ej) = ∂ui
∂xj

. But by definition, u∗(dxi)(ej) =

dxi(Du(ej)), and again by duality this will be the ei component of Du(ej). This will simply give

us the (i, j) component of the total derivative, which is simply ∂ui
∂xj

, as desired.

For (2) and (3), all we need observe is that at each point a, u∗ acts as a linear operator T ∗f(a)R
n →

T ∗aRm, and the linearity of this operator gives us that it preserves addition and scalar multiplication
at each point. �

Example. Let f : R3 → R2 be given by f(a, b, c) = (a2 + b2, c2). Then f∗ω will be

(a2 + b2)d(a2 + b2) + d(c2) = (a2 + b2)(2a da+ 2b db) + 2c dc.

So in some sense you can think of pullback as substitution.

Similarly, we can have k-forms, which will be assignments of elements of Ωk(T ∗aRn) for each point
a, so a k-form ω will have ω|a ∈ T ∗a (Rn). We will refer to the space of k-forms as Ωk (or Ωk(Rn)).

Now, given the existence of the wedge product, we have a map Ωk × Ω` → Ωk+` given by
(ω1, ω2) → ω1 ∧ ω2. We can define a pullback similarly on k-forms, as a map of vector spaces
additionally induces a map on their exterior powers, and by definition we have that f∗(ω1 ∧ ω2) =
f∗ω1 ∧ f∗ω2.

On Rn, a special class of forms are the n-forms. Why is this? Well, we know that at each point
a, Ωn looks like Ωn(T ∗aRn). We know that T ∗aRn has dimension n, so our resulting space will have
dimension

(
n
n

)
= 1. Also, we know that a (1-element) basis is given by dx1 ∧ · · · ∧ dxn by our

discussion in the last class, as the dxi generate the cotangent space at each point. So, if we have a
function f : Rn → Rn, at each point f∗ will be a linear operator on the 1-dimensional cotangent
space. But a linear operator on a 1-dimensional space will be multiplication by a scalar! Therefore,
f∗(dx1 ∧ · · · ∧ dxn) = g dx1 ∧ · · · ∧ dxn for some function g : Rn → R. Which function? Let’s
compute.

By our above observation that taking pullbacks commutes with taking wedge products, f ∗

(dx1 ∧ · · · ∧ dxn) = f∗dx1 ∧ · · · ∧ f∗dxn. We know by the earlier lemma that f∗dxi =
n∑
j=1

∂fi
∂xj

dxj .

Substituting and distributing the wedge product gives us

f∗(dx1 ∧ · · · ∧ dxn) = f∗dx1 ∧ · · · ∧ f∗dxn

=

 n∑
j=1

∂f1
∂xj

dxj

 ∧ · · · ∧
 n∑
j=1

∂fn
∂xj

dxj


=

∑
1≤j1,...,jn≤n

(
n∏
i=1

∂fi
∂xji

)
dxj1 ∧ · · · ∧ dxjn .
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Now, when any two of the ji are the same, we know that the wedge product vanishes. Thus in
any nonvanishing term, the ji are a permutation of {1, . . . , n}. But since the wedge product is
anticommutative, we can switch any two adjacent terms in the wedge product while gaining a
factor of −1, so we can sort the terms into dx1 ∧ · · · ∧ dxn and the factor we gain is simply the sign
of the permutation given by the ji. Thus we can rewrite our sum as

f∗(dx1 ∧ · · · ∧ dxn) =
∑

1≤j1,...,jn≤n

(
n∏
i=1

∂fi
∂xji

)
dxj1 ∧ · · · ∧ dxjn

=
∑
σ∈Sn

sgn(σ)

(
n∏
i=1

∂fi
∂xσ(i)

)
dx1 ∧ · · · ∧ dxn

=

(
det

[
∂fi
∂xj

])
dx1 ∧ · · · dxn

= (detDf) dx1 ∧ · · · ∧ dxn.

Thus our factor is just the determinant of Df ! (Philosophically, in some sense this is where
the factor of the Jacobian in the change of variables formula comes from, as we can write it as∫
hω =

∫
(h ◦ f)(f∗ω), where ω is an n-form.)

If ω is a differentiable k-form, we can actually take the derivative of it, which we will write dω.
Similarly to how a function f is just a 0-form and its derivative df is a 1-form, the derivative dω of
a k-form will be a k + 1-form. (Note that this means that the derivative of an n-form on Rn will
be 0, as there will be no nonzero n+ 1-forms.) We will now define this derivative.

Definition. Let ω =
∑
J

gJdxJ1 ∧ · · · ∧ dxJk be a k-form. (We know from last time that dxJ1 ∧

· · · ∧ dxJk with J1 < · · · < Jk indeed form a basis for k-forms.) Then

dω =
∑
J

dgJdxJ1 ∧ · · · ∧ dxJk =
∑
J

n∑
i=1

∂gJ
∂xi

dxi ∧ dxJ1 ∧ · · · ∧ dxJk .

Theorem. The following properties are true.

(1) d is additive. That is, if ω1, ω2 ∈ Ωk are k-forms, then d(ω1 + ω2) = dω1 + dω2.
(2) d satisfies a version of the product rule, up to a sign. In particular, if ω1 ∈ Ωk and ω2 ∈ Ω`,

then d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2

(3) d2 = 0. That is, d(dω) = 0 for all k-forms ω.
(4) d commutes with pullback. That is, if f is differentiable, then f∗(dω) = d(f∗ω).

Proof. The first three proofs simply follow from computation and the definitions. For (4) you can
proceed by induction, showing that if this holds for ω it holds for ω ∧ dxi, by using the other three
properties. �
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Note that (3) is a generalization (and indeed just follows from) the fact that partials commute.
If f : R2 → R is a function, then

d2f = d(df)

= d

(
∂f

∂x
dx+

∂f

∂y
dy

)
=
∂2f

∂x2
dx ∧ dx+

∂2f

∂y∂x
dy ∧ dx+

∂2f

∂x∂y
dx ∧ dy +

∂2f

∂y2
dy ∧ dy

=
∂2f

∂y∂x
dy ∧ dx+

∂2f

∂x∂y
dx ∧ dy

=

(
∂2f

∂x∂y
− ∂2f

∂y∂x

)
dx ∧ dy.
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