Math 25 Lecture Notes Alternating Algebra

Davis Lazowski

April 3, 2017

Definition 0.1. A k-tensor on V is a multilinear function $\underbrace{V \times V \cdots \times V}_{k \text{ times}} \rightarrow \mathbb{R}$, and the set of k-tensors is written $T^k(V)$.

Definition 0.2. The tensor product $f \otimes g$ of a k-tensor f and an ℓ -tensor g is the $(k + \ell)$ tensor

$$(f \otimes g)(v_1, \dots, v_{k+\ell}) = f(v_1 \dots v_k) \cdot g(v_{k+1} \dots v_{k+\ell})$$
(1)

Lemma 0.3. If $u_1 \ldots u_n$ is a basis for V^* , then $u_{i_1} \ldots u_{i_k}$ is a basis for $T^k(V)$, where i_j is any sequence on $\{1 \ldots k\}$.

Proof. Take $v_1 \ldots v_n$ dual to $u_1 \ldots u_n$. For an arbitrary tensor $t \in T^k(V)$, consider some input vectors $w_1 \ldots w_k$, so $w_j = \sum_{i=1}^n c_{ij} v_i$. Then

$$t(w_{1} \dots w_{j})$$

$$= t(\sum_{i_{1}=1}^{n} c_{i_{1}1}v_{i_{1}}, \dots, \sum_{i_{k}=1}^{n} c_{i_{k}k}v_{i_{k}})$$

$$= \sum_{i_{1}=1}^{n} c_{i_{1}1}t(v_{i_{1}}, \dots, \sum_{i_{k}=1}^{n} c_{i_{k}k}v_{i_{k}})$$

$$\vdots$$

$$= \sum_{i_{1}=1}^{n} \dots \sum_{i_{k}=1}^{n} c_{i_{1}1} \dots c_{i_{k}k}t(v_{i_{1}} \dots v_{i_{k}})$$
(2)

We could just as well write

$$C_{i_1,\dots,i_k} := t(v_{i_1},\dots,v_{i_k})$$
 (3)

from which it's easy to verify

$$t = \sum_{i_1=1}^{n} \cdots \sum_{i_k=1}^{n} C_{i_1,\dots,i_k} u_{i_1} \oplus \dots \oplus u_{i_n}$$

$$\tag{4}$$

Because we recover the $c_{i_11} \ldots c_{i_kk} t(v_{i_1}, \ldots, v_{i_k})$ precisely when the inputs are right.

- **Example 0.4.** The determinant is an element of $T^{\dim V}(V)$. Special property: alternating.
 - An inner product is a special element of $T^2(V)$. Special property: symmetric, positive definite.
 - Finally, $T^1(V)$ is just V.

We talked briefly about k-forms, which makes us interested in *alternating* tensors.

Definition 0.5. For $\tau \in T^k(V)$, let

$$\operatorname{Alt}: T^{k}(V) \to T^{k}(V)$$
$$\operatorname{Alt}(\tau)(v_{1}, \dots, v_{k}) = \sum_{\sigma \text{ is a permutation}} \frac{1}{k!} \operatorname{sign}(\sigma) \tau(v_{\sigma(1)} \dots v_{\sigma(k)})$$
(5)

Lemma 0.6. Alt is idempotent (i.e. $Alt \circ Alt = Alt$), and has as image the alternating tensors, $\Omega^k(V)$.

Proof. Let p a permutation swapping two indices. Since the map $\sigma \to \sigma p^{-1}$ is an isomorphism on the set of permutations on k letters, we could just as well index the sum by $\sigma' = \sigma p^{-1}$, which gets the second equality. Then

$$\operatorname{Alt}(\tau \circ p) = \frac{1}{k!} \sum_{\sigma} \operatorname{sign}(\sigma) \tau(v_{\sigma p(1)} \dots v_{\sigma p(k)}) = \frac{1}{k!} \sum_{\sigma} \operatorname{sign}(\sigma p^{-1}) \tau(v_{\sigma_1} \dots v_{\sigma_k})$$
(6)
$$\operatorname{And} \operatorname{sign}(\sigma p^{-1}) = -\operatorname{sign}(\sigma) \quad \text{So Alt}(\tau \circ p) = -\operatorname{Alt}(\tau)$$

And $\operatorname{sign}(\sigma p^{-1}) = -\operatorname{sign}(\sigma)$. So $\operatorname{Alt}(\tau \circ p) = -\operatorname{Alt}(\tau)$.

This argument is easily extended to general permutations. If already $\tau = \operatorname{Alt}(\eta)$, then

$$\operatorname{Alt}(\tau) = \frac{1}{k!} \sum_{\sigma} \operatorname{sign}(\sigma) \operatorname{Alt}(\eta) (v_{\sigma(1)} \dots v_{\sigma(k)})$$
$$\frac{1}{k!} \sum_{\sigma} \operatorname{sign}(\sigma) \operatorname{Alt}(\eta \circ \sigma)$$
$$= \frac{1}{k!} \sum_{\sigma} \operatorname{sign}(\sigma)^{2} \operatorname{Alt}(\eta)$$
$$= \operatorname{Alt}(\eta) = \tau$$

Let's take a break and note two additional nice properties this argument gives us:

- Sign changes when you swap two arguments
- If two arguments are the same, the alternating form must be zero. Otherwise, the sign change would lead to a contradiction.

We'd like a lemma like our first about bases of the alternating tensors. For this, we need a product on alternating tensors.

Definition 0.7. For $\tau \in T^k(V)$, $\eta \in T^{\ell}(V)$, define the wedge product

$$\tau \wedge \eta = \frac{(k+\ell)!}{k!\ell!} \operatorname{Alt}(\tau \oplus \eta) \tag{8}$$

This map is obviously bilinear, alternating. It turns out to be associative, though this is hard to prove (see Theorem 4-4. in Spivak).

Lemma 0.8. The set of all $u_{i_1} \wedge \cdots \wedge u_{i_k}$, where $1 \leq i_1 < i_2 \cdots < i_k \leq \dim V := n$ is a basis for $\Omega^k(V)$.

Proof. Write $\tau \in \Omega^k(V) \subset T^k(V)$ as $\tau = \sum_I c_I u_{i_1} \oplus \cdots \oplus u_{i_k}$. Then Alt $(\tau) = \tau$, but

$$\operatorname{Alt}(\sum c_I u_{i_1} \oplus \dots u_{i_n}) = \sum C_I u_{i_1} \wedge \dots \wedge u_{i_n}$$
(9)

If j < k but $u_{i_j} > u_{i_k}$, then because the wedge product is alternating we can swap them and only accumulate a minus sign, so we need only consider $1 \le i_1 \le \cdots \le i_k \le n$. And if $i_j = i_{j'}$, then again because the wedge product is alternating that term is zero.

Corollary 0.8.1. dim V = n means that dim $\Omega^k(V) = \binom{n}{k}$.

Corollary 0.8.2. For $\Omega^n(V)$, and a vector $u_i = \sum c_{ij}v_i$, then

$$w(u_1,\ldots,u_n) = \det(c_{ij})w(v_1,\ldots,v_n) \tag{10}$$

Proof. $\binom{n}{n} = 1$, and det is in the space, so anything else must be a linear multiple.

Corollary 0.8.3. A choice of $w \in \Omega^n(V)$ partitions ordered bases into two sets: those with w > 0 and with w < 0. A choice of preferred sign is called an orientation of V with respect to w. We write $[v_1 \dots v_n] \in \{\pm 1\}$ for the orientation to which a given basis belongs under w.

Remark 0.9. If V has an inner product, there is a unique w for any ordered orthonormal basis $v_1 \ldots v_n$ so that $w(v_1 \ldots v_n) = \mu$, where $\mu \in \{\pm 1\}$ is some preferred orientation. The w constructed this way is called the **volume element**. For example, $[e_1, \ldots, e_n] = 1$ in \mathbb{R}^n in \mathbb{R}^n has determiner det.

Remark 0.10. For $v_1, \ldots, v_{n-1} \in V$, there is a unique $v_n \in V$ such that

$$\langle w|v_n\rangle = \det \begin{pmatrix} v_1 | & \dots | & v_{n-1} & |w \end{pmatrix}$$
(11)

The vector v_n is often called the **cross product** of $(v_1 \dots v_{n-1})$. For n = 3, there is the usual mnemnonic

$$v_1 \times v_2 = \det \begin{pmatrix} \hat{e}_1 & \hat{e}_2 & \hat{e}_3 \\ v_{1x} & v_{1y} & v_{1z} \\ v_{2x} & v_{2y} & v_{2z} \end{pmatrix}$$
(12)

One constraint is that for the determinant to be nonzero, we need linear independence: so $\langle v_n, v_n \rangle$ constrains v_n to a one-dim subspace, if the $v_1 \dots v_{n-1}$ are linearly independent. Now you can just plug in some values to get the right linear multiple.