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Definition 0.1. A k-tensor on V is a multilinear function V × V · · · × V︸ ︷︷ ︸
k times

→

R, and the set of k-tensors is written T k(V ).

Definition 0.2. The tensor product f ⊗ g of a k-tensor f and an `-tensor
g is the (k + `) tensor

(f ⊗ g)(v1, . . . , vk+`) = f(v1 . . . vk) · g(vk+1 . . . vk+`) (1)

Lemma 0.3. If u1 . . . un is a basis for V ∗, then ui1 . . . uik is a basis for
T k(V ), where ij is any sequence on {1 . . . k}.

Proof. Take v1 . . . vn dual to u1 . . . un. For an arbitrary tensor t ∈ T k(V ),
consider some input vectors w1...wk, so wj =

∑n
i=1 cijvi. Then

t(w1 . . . wj)

= t(
n∑

i1=1

ci11vi1 , . . . ,

n∑
ik=1

cikkvik)

=
n∑

i1=1

ci11t(vi1 , . . . ,

n∑
ik=1

cikkvik)

...

=

n∑
i1=1

· · ·
n∑

ik=1

ci11 . . . cikkt(vi1 . . . vik)

(2)

We could just as well write

Ci1,...,ik := t(vi1 , . . . , vik) (3)

1



from which it’s easy to verify

t =
n∑

i1=1

· · ·
n∑

ik=1

Ci1,...,ikui1 ⊕ · · · ⊕ uin (4)

Because we recover the ci11 . . . cikkt(vi1 , . . . , vik) precisely when the in-
puts are right.

Example 0.4. • The determinant is an element of T dimV (V ). Special
property: alternating.

• An inner product is a special element of T 2(V ). Special property: sym-
metric, positive definite.

• Finally, T 1(V ) is just V .

We talked briefly about k-forms, which makes us interested in alternating
tensors.

Definition 0.5. For τ ∈ T k(V ), let

Alt : T k(V )→ T k(V )

Alt(τ)(v1, . . . , vk) =
∑

σ is a permutation

1

k!
sign(σ)τ(vσ(1) . . . vσ(k))

(5)

Lemma 0.6. Alt is idempotent (i.e. Alt ◦Alt = Alt), and has as image the
alternating tensors, Ωk(V ).

Proof. Let p a permutation swapping two indices. Since the map σ → σp−1

is an isomorphism on the set of permutations on k letters, we could just as
well index the sum by σ′ = σp−1, which gets the second equality. Then

Alt(τ◦p) =
1

k!

∑
σ

sign(σ)τ(vσp(1) . . . vσp(k)) =
1

k!

∑
σ

sign(σp−1)τ(vσ1 . . . vσk)

(6)
And sign(σp−1) = −sign(σ). So Alt(τ ◦ p) = −Alt(τ).
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This argument is easily extended to general permuatations. If already
τ = Alt(η), then

Alt(τ) =
1

k!

∑
σ

sign(σ)Alt(η)(vσ(1) . . . vσ(k))

1

k!

∑
σ

sign(σ)Alt(η ◦ σ)

=
1

k!

∑
σ

sign(σ)2Alt(η)

= Alt(η) = τ

(7)

Let’s take a break and note two additional nice properties this argument
gives us:

• Sign changes when you swap two arguments

• If two arguments are the same, the alternating form must be zero.
Otherwise, the sign change would lead to a contradiction.

We’d like a lemma like our first about bases of the alternating tensors.
For this, we need a product on alternating tensors.

Definition 0.7. For τ ∈ T k(V ), η ∈ T `(V ), define the wedge product

τ ∧ η =
(k + `)!

k!`!
Alt(τ ⊕ η) (8)

This map is obviously bilinear, alternating. It turns out to be associative,
though this is hard to prove (see Theorem 4-4. in Spivak).

Lemma 0.8. The set of all ui1 ∧ · · · ∧ uik , where 1 ≤ i1 < i2 · · · < ik ≤
dimV := n is a basis for Ωk(V ).

Proof. Write τ ∈ Ωk(V ) ⊂ T k(V ) as τ =
∑

I cIui1⊕· · ·⊕uik . Then Alt(τ) =
τ , but

Alt(
∑

cIui1 ⊕ . . . uin) =
∑

CIui1 ∧ · · · ∧ uin (9)

If j < k but uij > uik , then because the wedge product is alternating we
can swap them and only accumulate a minus sign, so we need only consider
1 ≤ i1 ≤ · · · ≤ ik ≤ n. And if ij = ij′ , then again because the wedge product
is alternating that term is zero.
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Corollary 0.8.1. dimV = n means that dim Ωk(V ) =
(
n
k

)
.

Corollary 0.8.2. For Ωn(V ), and a vector uj =
∑
cijvi, then

w(u1, . . . , un) = det(cij)w(v1, . . . , vn) (10)

Proof.
(
n
n

)
= 1, and det is in the space, so anything else must be a linear

multiple.

Corollary 0.8.3. A choice of w ∈ Ωn(V ) partitions ordered bases into
two sets: those with w > 0 and with w < 0. A choice of preferred sign is
called an orientation of V with respect to w. We write [v1 . . . vn] ∈ {±1}
for the orientation to which a given basis belongs under w.

Remark 0.9. If V has an inner product, there is a unique w for any ordered
orthonormal basis v1 . . . vn so that w(v1 . . . vn) = µ, where µ ∈ {±1} is some
preferred orientation. The w constructed this way is called the volume
element. For example, [e1, . . . , en] = 1 in Rn in Rn has determiner det.

Remark 0.10. For v1, . . . , vn−1 ∈ V , there is a unique vn ∈ V such that

〈w|vn〉 = det
(
v1| . . . | vn−1 |w

)
(11)

The vector vn is often called the cross product of (v1 . . . vn−1). For
n = 3, there is the usual mnemnonic

v1 × v2 = det

 ê1 ê2 ê3
v1x v1y v1z
v2x v2y v2z

 (12)

One constraint is that for the determinant to be nonzero, we need lin-
ear independence: so 〈vn, vn〉 constrains vn to a one-dim subspace, if the
v1 . . . vn−1 are linearly independent. Now you can just plug in some values
to get the right linear multiple.

4


