# Math 25 Lecture Notes Alternating Algebra 

Davis Lazowski

April 3, 2017

Definition 0.1. $A$ k-tensor on $V$ is a multilinear function $\underbrace{V \times V \cdots \times V}_{k \text { times }} \rightarrow$ $\mathbb{R}$, and the set of $k$-tensors is written $T^{k}(V)$.

Definition 0.2. The tensor product $f \otimes g$ of $a k$-tensor $f$ and an $\ell$-tensor $g$ is the $(k+\ell)$ tensor

$$
\begin{equation*}
(f \otimes g)\left(v_{1}, \ldots, v_{k+\ell}\right)=f\left(v_{1} \ldots v_{k}\right) \cdot g\left(v_{k+1} \ldots v_{k+\ell}\right) \tag{1}
\end{equation*}
$$

Lemma 0.3. If $u_{1} \ldots u_{n}$ is a basis for $V^{*}$, then $u_{i_{1}} \ldots u_{i_{k}}$ is a basis for $T^{k}(V)$, where $i_{j}$ is any sequence on $\{1 \ldots k\}$.

Proof. Take $v_{1} \ldots v_{n}$ dual to $u_{1} \ldots u_{n}$. For an arbitrary tensor $t \in T^{k}(V)$, consider some input vectors $w_{1} \ldots w_{k}$, so $w_{j}=\sum_{i=1}^{n} c_{i j} v_{i}$. Then

$$
\begin{array}{r}
t\left(w_{1} \ldots w_{j}\right) \\
=t\left(\sum_{i_{1}=1}^{n} c_{i_{1} 1} v_{i_{1}}, \ldots, \sum_{i_{k}=1}^{n} c_{i_{k} k} v_{i_{k}}\right) \\
=\sum_{i_{1}=1}^{n} c_{i_{1} 1} t\left(v_{i_{1}}, \ldots, \sum_{i_{k}=1}^{n} c_{i_{k} k} v_{i_{k}}\right)  \tag{2}\\
\vdots \\
=\sum_{i_{1}=1}^{n} \cdots \sum_{i_{k}=1}^{n} c_{i_{1} 1} \ldots c_{i_{k} k} t\left(v_{i_{1}} \ldots v_{i_{k}}\right)
\end{array}
$$

We could just as well write

$$
\begin{equation*}
C_{i_{1}, \ldots, i_{k}}:=t\left(v_{i_{1}}, \ldots, v_{i_{k}}\right) \tag{3}
\end{equation*}
$$

from which it's easy to verify

$$
\begin{equation*}
t=\sum_{i_{1}=1}^{n} \cdots \sum_{i_{k}=1}^{n} C_{i_{1}, \ldots, i_{k}} u_{i_{1}} \oplus \cdots \oplus u_{i_{n}} \tag{4}
\end{equation*}
$$

Because we recover the $c_{i_{1} 1} \ldots c_{i_{k} k} t\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)$ precisely when the inputs are right.

Example 0.4. - The determinant is an element of $T^{\operatorname{dim} V}(V)$. Special property: alternating.

- An inner product is a special element of $T^{2}(V)$. Special property: symmetric, positive definite.
- Finally, $T^{1}(V)$ is just $V$.

We talked briefly about $k$-forms, which makes us interested in alternating tensors.

Definition 0.5. For $\tau \in T^{k}(V)$, let

$$
\operatorname{Alt}(\tau)\left(v_{1}, \ldots, v_{k}\right)=\sum_{\sigma \text { is a permutation }} \frac{\operatorname{Alt}: T^{k}(V) \rightarrow T^{k}(V)}{} \frac{1}{k!} \operatorname{sign}(\sigma) \tau\left(v_{\sigma(1)} \ldots v_{\sigma(k)}\right)
$$

Lemma 0.6. Alt is idempotent (i.e. Alt o Alt = Alt), and has as image the alternating tensors, $\Omega^{k}(V)$.

Proof. Let $p$ a permutation swapping two indices. Since the map $\sigma \rightarrow \sigma p^{-1}$ is an isomorphism on the set of permutations on $k$ letters, we could just as well index the sum by $\sigma^{\prime}=\sigma p^{-1}$, which gets the second equality. Then

$$
\begin{equation*}
\operatorname{Alt}(\tau \circ p)=\frac{1}{k!} \sum_{\sigma} \operatorname{sign}(\sigma) \tau\left(v_{\sigma p(1)} \ldots v_{\sigma p(k)}\right)=\frac{1}{k!} \sum_{\sigma} \operatorname{sign}\left(\sigma p^{-1}\right) \tau_{( }\left(v_{\sigma_{1}} \ldots v_{\sigma_{k}}\right) \tag{6}
\end{equation*}
$$

And $\operatorname{sign}\left(\sigma p^{-1}\right)=-\operatorname{sign}(\sigma)$. So $\operatorname{Alt}(\tau \circ p)=-\operatorname{Alt}(\tau)$.

This argument is easily extended to general permuatations. If already $\tau=\operatorname{Alt}(\eta)$, then

$$
\begin{array}{r}
\operatorname{Alt}(\tau)=\frac{1}{k!} \sum_{\sigma} \operatorname{sign}(\sigma) \operatorname{Alt}(\eta)\left(v_{\sigma(1)} \ldots v_{\sigma(k)}\right) \\
\frac{1}{k!} \sum_{\sigma} \operatorname{sign}(\sigma) \operatorname{Alt}(\eta \circ \sigma)  \tag{7}\\
=\frac{1}{k!} \sum_{\sigma} \operatorname{sign}(\sigma)^{2} \operatorname{Alt}(\eta) \\
=\operatorname{Alt}(\eta)=\tau
\end{array}
$$

Let's take a break and note two additional nice properties this argument gives us:

- Sign changes when you swap two arguments
- If two arguments are the same, the alternating form must be zero. Otherwise, the sign change would lead to a contradiction.

We'd like a lemma like our first about bases of the alternating tensors. For this, we need a product on alternating tensors.

Definition 0.7. For $\tau \in T^{k}(V), \eta \in T^{\ell}(V)$, define the wedge product

$$
\begin{equation*}
\tau \wedge \eta=\frac{(k+\ell)!}{k!\ell!} \operatorname{Alt}(\tau \oplus \eta) \tag{8}
\end{equation*}
$$

This map is obviously bilinear, alternating. It turns out to be associative, though this is hard to prove (see Theorem 4-4. in Spivak).

Lemma 0.8. The set of all $u_{i_{1}} \wedge \cdots \wedge u_{i_{k}}$, where $1 \leq i_{1}<i_{2} \cdots<i_{k} \leq$ $\operatorname{dim} V:=n$ is a basis for $\Omega^{k}(V)$.

Proof. Write $\tau \in \Omega^{k}(V) \subset T^{k}(V)$ as $\tau=\sum_{I} c_{I} u_{i_{1}} \oplus \cdots \oplus u_{i_{k}}$. Then $\operatorname{Alt}(\tau)=$ $\tau$, but

$$
\begin{equation*}
\operatorname{Alt}\left(\sum c_{I} u_{i_{1}} \oplus \ldots u_{i_{n}}\right)=\sum C_{I} u_{i_{1}} \wedge \cdots \wedge u_{i_{n}} \tag{9}
\end{equation*}
$$

If $j<k$ but $u_{i_{j}}>u_{i_{k}}$, then because the wedge product is alternating we can swap them and only accumulate a minus sign, so we need only consider $1 \leq i_{1} \leq \cdots \leq i_{k} \leq n$. And if $i_{j}=i_{j^{\prime}}$, then again because the wedge product is alternating that term is zero.

Corollary 0.8.1. $\operatorname{dim} V=n$ means that $\operatorname{dim} \Omega^{k}(V)=\binom{n}{k}$.
Corollary 0.8.2. For $\Omega^{n}(V)$, and a vector $u_{j}=\sum c_{i j} v_{i}$, then

$$
\begin{equation*}
w\left(u_{1}, \ldots, u_{n}\right)=\operatorname{det}\left(c_{i j}\right) w\left(v_{1}, \ldots, v_{n}\right) \tag{10}
\end{equation*}
$$

Proof. $\binom{n}{n}=1$, and det is in the space, so anything else must be a linear multiple.

Corollary 0.8.3. A choice of $w \in \Omega^{n}(V)$ partitions ordered bases into two sets: those with $w>0$ and with $w<0$. A choice of preferred sign is called an orientation of $V$ with respect to $w$. We write $\left[v_{1} \ldots v_{n}\right] \in\{ \pm 1\}$ for the orientation to which a given basis belongs under $w$.

Remark 0.9. If $V$ has an inner product, there is a unique $w$ for any ordered orthonormal basis $v_{1} \ldots v_{n}$ so that $w\left(v_{1} \ldots v_{n}\right)=\mu$, where $\mu \in\{ \pm 1\}$ is some preferred orientation. The $w$ constructed this way is called the volume element. For example, $\left[e_{1}, \ldots, e_{n}\right]=1$ in $\mathbb{R}^{n}$ in $\mathbb{R}^{n}$ has determiner det.

Remark 0.10. For $v_{1}, \ldots, v_{n-1} \in V$, there is a unique $v_{n} \in V$ such that

$$
\begin{equation*}
\left\langle w \mid v_{n}\right\rangle=\operatorname{det}\left(v_{1}|\quad \ldots| \quad v_{n-1} \quad \mid w\right) \tag{11}
\end{equation*}
$$

The vector $v_{n}$ is often called the cross product of $\left(v_{1} \ldots v_{n-1}\right)$. For $n=3$, there is the usual mnemnonic

$$
v_{1} \times v_{2}=\operatorname{det}\left(\begin{array}{ccc}
\hat{e}_{1} & \hat{e}_{2} & \hat{e}_{3}  \tag{12}\\
v_{1 x} & v_{1 y} & v_{1 z} \\
v_{2 x} & v_{2 y} & v_{2 z}
\end{array}\right)
$$

One constraint is that for the determinant to be nonzero, we need linear independence: so $\left\langle v_{n}, v_{n}\right\rangle$ constrains $v_{n}$ to a one-dim subspace, if the $v_{1} \ldots v_{n-1}$ are linearly independent. Now you can just plug in some values to get the right linear multiple.

