QUADRATIC FORMS

BENJAMIN GUNBY

From a quadratic form, say $Q(\mathbf{x})=\sum_{1 \leq i \leq j \leq n} a_{i j} x_{i} x_{j}$ for $\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]$, let $M_{Q}=\left\{m_{i j}\right\}$ be the n by n matrix given by $m_{i i}=a_{i i}$, and $m_{i j}=m_{j i}=\frac{a_{i j}}{2}$ for $1 \leq i<j \leq n$. This matrix is set up to have two properties.

- M_{Q} is symmetric.
- $\mathbf{x} M_{Q} \mathbf{x}^{T}=Q(\mathbf{x})$.

For example, if $Q(\mathbf{x})=x_{1}^{2}+3 x_{1} x_{2}+2 x_{2}^{2}$, then $M_{Q}=\left[\begin{array}{cc}1 & \frac{3}{2} \\ \frac{3}{2} & 2\end{array}\right]$.
By the first property, and by the Spectral Theorem, M_{Q} has real eigenvalues and is diagonalizable by an orthogonal matrix. That is, there is an orthogonal matrix P (so $P^{T}=P^{-1}$) and a real diagonal matrix D with $M_{Q}=P D P^{-1}$. Since P is orthogonal, substitution yields $M_{Q}=P D P^{T}$.

Thus $Q(\mathbf{x})=\mathbf{x} M_{Q} \mathbf{x}^{T}=\mathbf{x} P D P^{T} \mathbf{x}^{T}=(\mathbf{x} P) D\left(\mathbf{x} P^{T}\right)$. Now, let the diagonal entries of D be $\lambda_{1}, \ldots, \lambda_{n}$, and the columns of P be v_{1}, \ldots, v_{n}. Then $\mathbf{x} P=\left[\mathbf{x} v_{1}, \ldots, \mathbf{x} v_{n}\right]$. So substituting, we have that

$$
Q(\mathbf{x})=\left[\begin{array}{lll}
\mathbf{x} v_{1} & \cdots & \mathbf{x} v_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} v_{1} \\
\vdots \\
\mathbf{x} v_{n}
\end{array}\right]=\sum_{i=1}^{n} \lambda_{i}\left(\mathbf{x} v_{i}\right)^{2} .
$$

But $\mathbf{x} v_{i}$ is some linear expression in the x_{i} 's, so we have just written $Q(\mathbf{x})$ as a weighted sum of squares! We can pull the (absolute value of) λ_{i} inside the square, to obtain

$$
Q(\mathbf{x})=\sum_{i=1}^{n} \operatorname{sgn}\left(\lambda_{i}\right)\left(\sqrt{\left|\lambda_{i}\right|} \mathbf{x} v_{i}\right)^{2} .
$$

Now, we have written $Q(\mathbf{x})$ in our standard form-the sum and difference squares of linear functions of the x_{i} 's! We know the functions are linearly independent because the v_{i} are linearly independent (this is what it means for the matrix M_{Q} to be diagonalizable, which it is by the Spectral Theorem). Thus we can read out the signature exactly from this expression! The number of positive (respectively negative) terms will just be the number of positive (respectively negative) eigenvalues of M_{Q}.

