A FUN FUBINI INTEGRAL SECTION 5, MATH 25B

BENJAMIN GUNBY

Problem. Find $\int_{0}^{\infty} \frac{\tan ^{-1}(2 x)-\tan ^{-1}(x)}{x}$.
Solution. The idea is to write this as a double integral, and then switch the order of integration per Fubini.

Now, note that since $\frac{\partial}{\partial y} \tan ^{-1}(x y)=\frac{x}{1+x^{2} y^{2}}$, by our usual 1-dimensional Fundamental Theorem of Calculus, we have that

$$
\int_{1}^{2} \frac{x}{1+x^{2} y^{2}} d y=\left.\tan ^{-1}(x y)\right|_{y=1} ^{2}=\tan ^{-1}(2 x)-\tan ^{-1}(x)
$$

Since x is a constant in the integral to the left, we can divide through by it to obtain

$$
\frac{\tan ^{-1}(2 x)-\tan ^{-1}(x)}{x}=\int_{1}^{2} \frac{1}{1+x^{2} y^{2}} d y
$$

Thus our original integral can be written as

$$
\int_{0}^{\infty} \int_{1}^{2} \frac{1}{1+x^{2} y^{2}} d y d x
$$

So we are taking a double integral over the region $[0, \infty] \times[1,2]$. We can now switch the order of integration by Fubini (in a serious context, we'd first have to make sure this is integrable but this follows from some bounding) to say that this is in fact equal to

$$
\int_{1}^{2} \int_{0}^{\infty} \frac{1}{1+x^{2} y^{2}} d x d y
$$

Now we can evaluate the inner integral. In fact, we have already evaluated the integral of $\frac{1}{1+x^{2} y^{2}}$ (with respect to y, but it's symmetric!) and so

$$
\int_{0}^{\infty} \frac{1}{1+x^{2} y^{2}} d x=\left.\frac{1}{y} \tan ^{-1}(x y)\right|_{x=0} ^{\infty}=\frac{\pi}{2 y} .
$$

(Technically if y is negative it would be $-\frac{\pi}{2 y}$ as $\tan ^{-1}(-\infty)=-\frac{\pi}{2}$ but y is always in $[1,2]$ in our case.) Therefore, the answer simply becomes

$$
\int_{1}^{2} \frac{\pi}{2 y} d y=\left.\frac{\pi}{2} \log y\right|_{y=1} ^{2}=\frac{\pi \log 2}{2}
$$

