
Practice Math 25b Midterm #2.1 Solutions

Eric Peterson, Rohil Prasad

Problem 1. Compute the derivative of the function f : Rn → Rn given by the formula

f(v) = ‖v‖2 · v.

Solution. There are at least two ways to solve this problem.

1. You can proceed directly from the definition and guess the linear part:

f(v + h)− f(v) = ‖v + h‖2(v + h)− ‖v‖2v
= (‖v‖2 + ‖h‖2 + 2〈v, h〉)(v + h)− ‖v‖2v
= 2〈v, h〉v + ‖v‖2h︸ ︷︷ ︸

linear part

+ ‖h‖2v + ‖h‖2h+ 2〈v, h〉h.

So, we set (Dvf)(h) = 2〈v, h〉v + ‖v‖2h and hope for the best:

lim
h→0

f(v + h)− (f(v) + (Dvf)h

‖h‖
= lim

h→0

‖h‖2v + ‖h‖2h+ 2〈v, h〉h
‖h‖

.

Indeed, each of these terms goes to zero as h tends to zero.

2. We can think of this function as the composite of the identity map i : v 7→ v, the
square-norm map s : v 7→ ‖v‖2, and the product map p : (c, w) = c · w sending a pair
of a scalar and a vector to their product. The derivative of i is the identity, and the
derivative of s is

Dvs =
(

2|v1| · · · 2|v2|
)
.

The map p is bilinear, so we employ its product rule as follows:

Dvf = D‖v‖2,vp ◦Dv(s× i)
= D‖v‖2,vp ◦ (Dvs× id)

= v ·Dvs+ ‖v‖2 · id . (ECP)
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Problem 2. Let S1, S2, . . . be a countable collection of subsets of Rn such that Si has
content zero for every i. Set S =

⋃∞
i=1 Si to be their union. Prove or disprove (i.e., provide

a counterexample) the following statements:

1. S has measure zero.

2. S has content zero.

Solution. 1. We will show for any ε > 0 that there is a countable set of rectangles {Ri}∞i=1

of total volume less than ε such that S ⊆ ∪∞i=1Ri.

Since each Sj has content zero, we can construct for any j a set of nj rectangles {Rj
i}
nj

i=1

of total volume less than ε/2j.

Then, the union of all the Rj
i is a set of rectangles of volume less than

∑∞
j=1 ε/2

j = ε
that covers S as desired.

2. We provide a counterexample where S does not have content zero.

Let Qn ⊂ Rn be the set of elements with rational coordinates. Since it is countable,
we can label its elements as q1, q2, . . . and then set Si = {qi}.
It is clear that all of the Si are content zero, but their union S is equal to Qn. This
set is unbounded but the union of a finite number of open rectangles is bounded, so
clearly S cannot have content zero in this case. (RP)

Problem 3. Let Q : Rn → R be a positive definite quadratic form.

1. Let S = {v ∈ Rn : ‖v‖ = 1} be the sphere of unit vectors in Rn. Show that there is a
v0 ∈ S such that for all v ∈ S,

Q(v) ≥ Q(v0) > 0.

2. Use the formula Q(x) = ‖x‖2Q(x/‖x‖) to conclude that there exists a constant C > 0
such that Q(x) ≥ C‖x‖2.

Solution. 1. S is a compact connected set, hence has compact connected image in R
under the continuous map Q, hence is a closed interval. Since Q is positive definite,
this closed interval is a subset of (0,∞), so its minimum is a positive number, achieved
by some v0 ∈ S.

2. Just chain them:

Q(x) = ‖x‖2 ·Q
(

x

‖x‖

)
≥ ‖x‖2 ·Q(v0). (ECP)

Problem 4. Find the critical points of f(x, y) = (x2 + y2)ex
2−y2 and classify them each as

a local minimum, a local maximum, or a saddle point.
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Solution. This problem is really computational. Goodness. Sorry.
We compute

Dx,yf =
(

2xex
2−y2 + (x2 + y2)2xex

2−y2 2yex
2−y2 + (x2 + y2)(−2y)ex

2−y2
)

=
(

(x2 + y2 + 1)2xex
2−y2 (x2 + y2 − 1)(−2y)ex

2−y2
)
.

We are looking for values c = (a, b) for which Dcf = 0. The first entry vanishes if and only
if a = 0, in which case the second component specializes to

∂f

∂y

∣∣∣∣
(x,y)=(a,b)

= (y2 − 1)(−2y)e−y
2

.

It follows that b = 0, b = 1, or b = −1. In each case, we will want to have access to the
matrix of second partials:

Hx,yf =

(
2ex

2−y2(1 + 2x4 + y2 + x2(5 + 2y2)) −4ex
2−y2xy(x2 + y2)

−4ex
2−y2xy(x2 + y2) 2ex

2−y2(1− 5y2 + 2y4 + x2(−1 + 2y2))

)
.

• Set a = 0 and b = 0. The matrix then becomes

(
2 0
0 2

)
, hence the corresponding

quadratic form is

P 2
f@(0,0)(0 + h, 0 + k)− P 1

f@(0,0)(0 + h, 0 + k) =
1

2
(2h2 + 2k2) = h2 + k2.

This represents a local minimum.

• Set a = 0 and b = −1. The matrix then becomes

(
4e−1 0

0 −2e−1

)
, hence the

corresponding quadratic form is

P 2
f@(0,−1)(0 + h,−1 + k)− P 1

f@(0,−1)(0 + h,−1 + k) = e−1(2h2 − k2).

This represents a saddle point.

• Set a = 0 and b = 1. The matrix then becomes

(
4e−1 0

0 −4e−1

)
, hence the corre-

sponding quadratic form again is

P 2
f@(0,1)(0 + h, 1 + k)− P 1

f@(0,1)(0 + h, 1 + k) = e−1(2h2 − k2)

This again represents a saddle point. (ECP)

Problem 5. Let F be the real vector space of bounded integrable functions [0, 1]→ R, let
Z ⊂ F be the subspace of integrable functions that are nonzero exactly on a subset of [0, 1]
of measure 0, and set L = F/Z. Define the function

S : L→ R,

f 7→
(∫ 1

0

|f |2
)1/2

.

(Note that adding a function in Z to f does not change the integral.)
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1. Show that S(λ · f) = |λ| · S(f).

2. Show that S(f + g) ≤ S(f) + S(g) (Hint: Apply Cauchy-Schwarz to a well chosen
inner product).

Solution. 1. This is a direct calculation:

S(λ · f) =

(∫ 1

0

|λf |2
)1/2

=

(∫ 1

0

|λ|2|f |2
)1/2

= |λ|
(∫ 1

0

|f |2
)

= |λ| · S(f).

2. Squaring both sides, the inequality is equivalent to∫ 1

0

(|f |+ |g|)2 ≤
∫ 1

0

(|f |2 + |g|2) + 2

(∫ 1

0

|f |2
∫ 1

0

|g|2
)1/2

.

Simplifying this, we must show∫ 1

0

|fg| ≤
(∫ 1

0

|f |2
∫ 1

0

|g|2
)1/2

.

Now, note that the function 〈f, g〉 =
∫ 1

0
fg is in fact an inner product on L! It is clearly

bilinear. Furthermore, it is positive-semidefinite since
∫ 1

0
f 2 = 0 implies f = 0 except

on a subset of measure zero, which is the zero element in L—this is why we passed to
the quotient.

Now the inequality above is exactly the Cauchy-Schwarz inequality

〈|f |, |g|〉 ≤
√
〈|f |, |f |〉 · 〈|g|, |g|〉. (RP)
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Practice Math 25b Midterm #2.2 Solutions

Eric Peterson

Problem 1. Let U ⊆ L(Rn,Rn) denote the set of invertible operators. Our goal is to show
that χ(A) = A−1 defines a differentiable function χ : U → U .

1. Show that U forms an open subset. (Hint: don’t invoke epsilonics. Think of a clever
continuous map and a clever open you can take the preimage of.)

2. Use the identity A · A−1 = I and the chain rule to calculate DAχ.

Solution. 1. The map det : L(Rn,Rn) → R does the job: the preimage of the open set
R \ {0} is exactly the set of invertible operators.

2. The derivative of the right-hand side of the functional equation is zero. We access the
derivative of the left-hand side using the chain rule:

DA(p ◦ (id×χ))(H) = DA,A−1p ◦ (DA id×DAχ)(H)

= A ·DAχ+DA id(H) · A−1.

Combining these equations and solving for DAχ, we get

DAχ = A−1 · −H · A−1. (ECP)

Problem 2. If A is a measure zero subset of a bounded rectangle R such that the integral∫
R
χA exists, show that the integral must be equal to zero.

Solution. As in the definition of measure zero, let O be an ε–cover of A by rectangles,
and extend the edges of U ∈ O to form a partition P of R. Since each rectangle in the
upper sum either does not intersect A or is contained in one of the opens U ∈ O, we have
Uf (P ) ≤ ε. (ECP)

Problem 3. We say a sequence of functions (fn) : R→ R converge pointwise to f : R→ R
if for every x ∈ R, the sequence (fn(x)) converges to f(x).

1. Exhibit a sequence (fn) of continuous functions that converge pointwise to a non-
continuous function f .
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2. Exhibit a sequence (fn) of continuously differentiable functions that converge pointwise
to a function f that is continuous but not differentiable everywhere. (Hint: Consider
f(x) = |x|.)

Solution. 1. A classic example is fn(x) = xn on [0, 1], converging pointwise to

f(x) =

{
0 if x < 1,

1 if x = 1.

2. You can guess an example as in the hint as follows: a rational function has limiting
behavior given by its leading terms, so consider something like

|x| =
√
x2 =

√
xn+2/xn ≈

√
xn+2

xn + 1
near ∞.

This has good behavior for x > 1, but poor behavior for 0 ≤ x < 1. This window can
be narrowed by introducing an extra factor:

|x| ≈
√

(nx)n+2

nn+2xn + 1
.

This now has good behavior on x > 1/n and hence the sequence converges pointwise
to |x|. To see that fn is differentiable, the chain rule mostly suffices, except at 0 where
we make the manual check

lim
x→0

√
(nx)n+2

nn+2xn+1

x
= lim

x→0

√
(nx)n+2

nn+2xn+2 + x2
= lim

x→0

√
1

1 + n−(n+2)x2−n
.

For n > 2, the denominator tends to ±∞ and hence the fraction tends to 0, showing
fn differentiable at 0 with derivative 0. (ECP)

Problem 4. 1. Recall that the Cantor set is constructed by removing the middle one-
third open interval (1/3, 2/3) from the unit interval, then removing the middle one-third
open intervals from the two intervals that remain, and so on, at each step removing
the middle one-third open intervals. Show that the Cantor set is of measure zero.

2. Now perform the Cantor set construction, but at the nth step remove the middle strip
of each interval of size 1/4n (not considered as a percentage of the volume of the
subinterval). This is called a fat Cantor set. Calculate its volume.

Solution. 1. Each of the stages of the Cantor set construction give a cover of the finished
Cantor set by rectangles of discernable volume. At the nth stage, there are 2n remaining
rectangles, all disjoint and each of volume 1/3n. Hence, their total volume is 2n/3n,
which tends to 0 as n tends to ∞.
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2. We phrase the above calculation slightly differently to accommodate the non-proportional
setup. The initial fat Cantor set approximation is a single rectangle of volume V0 = 1.
When forming the nth approximation from the (n−1)st, we remove rectangles of volume
1/4n from 2n−1 many intervals, so that Vn = Vn−1 − 2n−1/4n. We therefore calculate:

V∞ = 1− 1

2

∞∑
n=1

1

2n
. = 1− 1

2
=

1

2
. (ECP)

Problem 5. Let Bn
R ⊆ Rn denote the ball of radius R, centered at the origin.

1. Justify the equation vol(Bn
R) = Rn vol(Bn

1 ).

2. Use Fubini’s theorem to justify the equation

vol(Bn
1 ) = vol(Bn−1

1 ) ·
∫ 1

−1
(1− x2n)

n−1
2 dxn.

3. Find a recursive expression for the sequence cn =
∫ 1

−1(1− t
2)

n−1
2 dt as n varies.

4. Conclude that the ratio of the volume of the unit ball to the volume of the cube that
circumscribes it tends to zero as n tends to ∞.

Solution. 1. Bn
R is the rescaling of Bn

1 by a factor of R, and volume scales by the nth

power in Rn. If you like, you can justify this with a change-of-coordinates formula: the
map z 7→ Rz maps Bn

1 to Bn
R, and the Jacobian of z 7→ Rz is Rn.

2. As instructed, we apply Fubini’s theorem:

vol(Bn
1 ) =

∫
Bn

1

1 =

∫
[−1,1]×n

χBn
1

=

∫ 1

−1

(∫
[−1,1]×n

χBn−1√
1−x2n

dx1 · · · dxn−1

)
dxn

=

∫ 1

−1

√
1− x2n

(n−1)
· vol(Bn−1

1 ) dxn

= vol(Bn−1
1 ) ·

∫ 1

−1
(1− x2n)

n−1
2 dxn.

3. This is a fun exercise in classical calculus. The quadratic in our integrand is hiding
under a quadratic radical, so we begin by making the coordinate transformation t =
sin θ:

cn =

∫ 1

−1
(1− t2)

n−1
2 dt =

∫ π/2

−π/2
cosn θ dθ.
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Then, we split the integrand up into cosn θ dθ = cosn−1 θ ·cos θ dθ and apply integration
by parts to get

cn =

∫ π/2

−π/2
cosn θ dθ =

[
cosn−1 θ · sin θ −

∫
cosn−2 θ · sin θ · (n− 1) · (− sin θ) dθ

]π/2
−π/2

.

The first term evaluates to 0 at either endpoint, so can be discarded. Meanwhile, the
sin2 θ factor can be rewritten as (1− cos2 θ), giving∫ π/2

−π/2
cosn−2 θ · sin θ · (n− 1) · sin θ dθ = (n− 1)

∫ π/2

−π/2
cosn−2 θ(1− cos2 θ) dθ

= (n− 1)(cn−2 − cn).

Rearranging thus gives the equation

cn =
n− 1

n
cn−2.

4. This links up to our work in the previous part to give a kind of expression for vol(Bn
1 ).

Note that c2 = π/2 and c3 = 4/3, both of which are strictly less than 2. It follows
that in general cn is strictly less than π/2 and hence strictly less than 2. In turn, the
fraction

vol(Bn
1 )

vol(Cn
1 )

=
cn · vol(Bn−1

1 )

2 · vol(Cn−1
1 )

<
π

4
· vol(Bn−1

1 )

vol(Cn−1
1 )

tends to zero, since π/4 < 1. (ECP)
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Math 25b Midterm #2 Solutions

Eric Peterson

Problem 1. 1. Subdivide [−1, 1]× [−1, 1] into 4N subsquares. Produce an estimate for
the number of squares that intersect the unit circle.

2. Conclude that the unit circle has measure zero.

Solution. 1. Divide the unit square into four quadrants, restrict attention to the first
quadrant, and consider the part of the circle living above the diagonal line y = x. Now
consider the subdivision of this quadrant into 4N−1 subsquares. In each column in the
region of interest, we expect the circle to intersect at most two subsquares, since the
derivative of y =

√
1− x2 is bounded in magnitude by 1 in this region. This thus

amounts to 2 · 2N subsquares, and together with the other seven half-quadrants we
have at most 8 · 2 · 2N subsquares contributing.

2. Since each subsquare has an area 4−N , an upper estimate for the “area” of the circle
is 8 · 2 · 2N · 4−N = 16/2N . This tends to zero as N tends to ∞, hence the circle has
measure zero. (ECP)

Problem 2. Consider the system of equations

x+ y + sin(xy) = h,

sin(x2 + y) = 2h.

Does this system have a solution for sufficiently small values h ∈ R?

Solution. Write the left-hand side as a function:

f

(
x
y

)
=

(
x+ y + sin(xy)

sin(x2 + y)

)
.

This function is continuously differentiable near the origin, and at the origin we see that

D0f =

(
1 + y cos(xy) 1 + x cos(xy)
2x cos(x2 + y) cos(x2 + y)

)∣∣∣∣
(x,y)=(0,0)

=

(
1 1
0 1

)
is an invertible operator. Hence, the inverse function theorem applies, so that f admits an
inverse near the origin. As a special case, the domain of the local inverse includes values like
(h, 2h) for h� 1, and hence solutions are guaranteed to exist. (ECP)
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Problem 3. Let A and B be Jordan-measurable subsets of R3. For every c ∈ R, let
Ac = {(x, y) : (x, y, c) ∈ A} and define Bc similarly. Suppose each Ac and Bc are Jordan-
measurable and have the same area. Show that A and B have the same volume.

Solution. Since A,B are Jordan-measurable, they are bounded and have integrable charac-
teristic functions.

Let R = [a1, b1]× [a2, b2]× [a3, b3] be a rectangle containing both A and B.
Then we can write the volumes of A and B as

∫
R
χA and

∫
R
χB respectively.

By Fubini’s theorem, these are equal to∫
[a1,b1]×[a2,b2]

∫
[a3,b3]

χAdcd(x, y)

and ∫
[a1,b1]×[a2,b2]

∫
[a3,b3]

χBdcd(x, y)

respectively.
Using the fact that the slices Ac and Bc have the same area, we calculate∫

[a1,b1]×[a2,b2]

∫
[a3,b3]

χAdcd(x, y) =

∫
[a1,b1]×[a2,b2]

(∫
[a3,b3]

χAcdc

)
d(x, y)

=

∫
[a1,b1]×[a2,b2]

(∫
[a3,b3]

χBcdc

)
d(x, y).

Therefore, A and B have the same volume. (RP)

Problem 4. Consider the space of matrices

R4 ∼=−→M2×2,
a
b
c
d

 7→ (
a b
c d

)
.

1. Show that the zero matrix is the only singular point of det : M2×2 → R.

2. Describe P 2
det@ 0(a, b, c, d). Calculate the signature of the quadratic part and use it to

classify the critical point at 0.

3. (Bonus:) Give a reason why you might have guessed the answer to part 1 without any
computation.

Solution. 1. The partial derivatives of det assemble into the matrix

DA det =
(
d −c −b a

)
.

This matrix vanishes exactly if a = 0, b = 0, c = 0, and d = 0 are all satisfied.
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2. The function det(A) = ad − bc is itself a quadratic function, hence is its own second
degree Taylor polynomial. More than this, there is no constant term at 0, so it is even
its own quadratic form. As mentioned repeatedly in class, for an isolated mixed term
like ad we can find variables a = u− v, d = u+ v so that the expansion has no mixed
terms, resulting in

ad− bc = u2 − v2 + w2 − t2.

The signature of this form is (2,−2), hence is a saddle.

3. The derivative is meant to encode how the value of the function changes when moving
along a tangent direction. For any nonsingular matrix, there is a direction one can
move to make the matrix “more singular” by bringing the columns closer together,
hence the derivative decreases. For a nonzero singular matrix, there is a direction one
can move (orthogonal to the output of the matrix) which will cause the matrix to no
longer be singular and hence det to be nonzero. Lastly, right at the zero matrix, no
single direction of change in the matrix will cause the matrix to be nonsingular, hence
the derivative is zero. (ECP)

Problem 5. Use Fubini’s theorem to compute the integral∫ π

0

∫ π

y

sinx

x
dx dy.

Solution. As instructed, we use Fubini’s theorem to present the integral another way:∫ π

0

∫ π

y

sinx

x
dx dy =

∫ π

0

∫ x

0

sinx

x
dy dx =

∫ π

0

(x− 0)
sinx

x
dx = 2.

(Though the problem didn’t ask you to do so, if you wanted to check that sinx/x satisfied the
hypotheses of Fubini’s theorem, you would note that the function is continuous away from
(0, y), and there it is defined by continuous extension, using the nontrivial single-variable
fact that limx→0 sinx/x = 1.) (ECP)
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