Homework \#8 Solutions

Thayer Anderson, Davis Lazowski, Handong Park, Rohil Prasad
Eric Peterson

1 For submission to Thayer Anderson

Problem 1.1. Let $g: A \rightarrow \mathbb{R}^{p}$ be a differentiable function defined on an open $A \subset \mathbb{R}^{n}$, such that $D g$ is of rank p everywhere on $M=g^{-1}(0)$, which we then know to be a manifold. Let $f: \mathbb{R}^{\ltimes} \rightarrow \mathbb{R}$ be an auxiliary differentiable function which we hope to optimize on M. Show that if a maximum or minimum of f on M occurs at $a \in M$, show that there are $\lambda_{1}, \ldots, \lambda_{p} \in \mathbb{R}$ such that

$$
\frac{\partial f}{\partial x_{j}}(a)=\sum_{i=1}^{p} \lambda_{i} \frac{\partial g_{i}}{\partial x_{j}}(a)
$$

Start by giving a geometric interpretation of this condition.
Solution. The geometric statement of this claim is that the gradient of f must be perpendicular to the manifold, M, at the the point a. Certainly, this claim must be true, or we could project $\nabla f(a 0$ along M and move in that direction to increase or decrease the value of f, which would be a contradiction. Now we will justify why the problem is equivalent to this necessarily true geometric claim.

Since M is a level curve of g, it follows that it is a level curve in each component, $g_{1}, g_{2}, \ldots g_{p}$. Thus each ∇g_{i} is perpendicular to M. Furthermore, because the matrix $\left(D_{a} g\right)^{\prime}=\left\{\nabla g_{1}\left|\nabla g_{2}\right| \cdots \mid \nabla g_{p}\right\}$ has full rank by assumption, it follows that the ∇g_{i} are linearly independent. Morever it follows that they span the orthogonal complement of the manifold. Thus they form a basis. The claim

$$
\frac{\partial f}{\partial x_{j}}(a)=\sum_{i=1}^{p} \lambda_{i} \frac{\partial g_{i}}{\partial x_{j}}(a)
$$

can be therefore be interpreted to mean exactly that $\nabla f \in \operatorname{span}\left\{g_{1}, \ldots, g_{p}\right\}$, which is the geometric claim that I have already argued.

Problem 1.2. You can try to use Problem 1.1 to solve for such points a : the system of equations involving λ give n equations in $(n+1)$ unkowns and then the restriction $g(a)=0$ gives an additional equation. Try to apply this idea in the following problem:

1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be self-adjoint under the usual inner product, and suppose that in the usual basis it takes the matrix form $A=\left(a_{i j}\right)$, so that $a_{i j}=a_{j i}$. Set $f(x)=\langle T x, x\rangle$ and show that $D_{k} f(x)=2 \sum_{j=1}^{n} a_{k j} x^{j}$. By considering the maximum of $\langle T x, x\rangle$ on S^{n-1}, show that there is $x \in S^{n-1}$ and $\lambda \in \mathbb{R}$ such that $T x=\lambda x$.
2. If $V=\left\{y \in \mathbb{R}^{n} \mid\langle x, y\rangle=0\right\}$, show that $T(V) \subset V$ and $T: V \rightarrow V$ is self-adjoint.
3. Show that T has a basis of eigenvectors.

Solution. 1. We can compute $f(x)$ by first computing $T x$:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \vdots \\
\ldots & & \ddots & \vdots \\
a_{n 1} & \ldots & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{ccc}
x_{1} & & \\
x_{2} & \vdots & x_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
\vdots \\
a_{n 1} x_{1}+\cdots+a_{n n} x_{n}
\end{array}\right)
$$

Then $f(x)$ is given by

$$
f(x)=\langle T(x), x\rangle=\sum_{j=1}^{n}\left(x_{j} \sum_{i=1}^{n} a_{j i} x_{i}\right)
$$

To calculate $D_{k} f(x)$ we take the partial derivative by x_{k}. This kills all the terms without an x_{k} (that is, where i and j are not equal to k):

$$
\begin{aligned}
\frac{\partial}{\partial x_{k}} \sum_{j \neq k}\left(x_{j} \sum_{i \neq k} a_{j i} x_{i}\right)+ & \frac{\partial}{\partial x_{k}} \sum_{j=k}\left(x_{j} \sum_{i \neq k} a_{j i} x_{i}\right)+\frac{\partial}{\partial x_{k}} \sum_{j \neq k}\left(x_{j} \sum_{i=k} a_{j i} x_{i}\right)+\frac{\partial}{\partial x_{k}} a_{k k} x_{k}^{2} \\
& =0+\frac{\partial}{\partial x_{k}}\left(\sum_{i \neq k} a_{k i} x_{i} x_{k}\right)+\frac{\partial}{\partial x_{k}}\left(\sum_{j \neq k} a_{j k} x_{j} x_{k}\right)+\frac{\partial}{\partial x_{k}} a_{k k} x_{k}^{2}
\end{aligned}
$$

Due to self adjointness $\left(a_{k i}=a_{i k}\right)$ we see that these the first two terms contribute equally, we and we get

$$
\frac{\partial f(x)}{\partial x_{k}}=\sum_{i=1}^{n} 2 a_{k i} x_{i}
$$

Since S^{n-1} is compact and f continuous, we can find a maximum of f on S^{n-1}. If we can construct a function, $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with derivative of rank 1 such that $S^{n-1}=g^{-1}(0)$ then we will be guaranteed a λ that satisfies the problem description. The function $\left(g(x)=x_{1}^{2}+\cdots+x_{n}^{2}-1\right.$ is certainly such a function. We see that $D g=\left(2 x_{1} \ldots 2 x_{n}\right)$. Then at the maximum point

$$
\frac{\partial f(x)}{\partial x_{k}}=\sum_{i=1}^{n} 2 a_{k i} x_{i}=2 \lambda x_{k}
$$

Thus $T(x)=\lambda x$.
Take fixed x as in the previous part that maximizes $\langle T x, x\rangle$ on S^{n-1}. Then, by self-adjointness

$$
\langle x, T y\rangle=\langle T x, y\rangle=\langle\lambda x, y\rangle=\lambda\langle x, y\rangle=0
$$

Therefore $T(V) \subset V$. It follows that the induced operator $T: V \rightarrow V$ is self-adjoint because T is self-adjoint. By the spectral theorem for self-adjoint operators, T admits a basis of eigenvectors.

2 For submission to Davis Lazowski

Problem 2.1. 1. In class, we claimed that the zero-locus of a sufficiently nice function formed a manifold. Show a partial converse to this: for $M \subseteq \mathbb{R}^{n}$ a k-manifold and $x \in M$ a point on it, show there exists an open neighborhood $A \subseteq \mathbb{R}^{n}$ of x and a differentiable function $g: A \rightarrow \mathbb{R}^{n-k}$ such that $g^{-1}(0)=A \cap M$ and the derivative of g is of $\operatorname{rank}(n-k)$ on this locus.
2. If $M \subseteq \mathbb{R}^{n}$ is an orientable $(n-1)$-manifold, show that there is an open set $A \subseteq \mathbb{R}^{n}$ and a differentiable function $g: A \rightarrow \mathbb{R}$ so that $M=g^{-1}(0)$ and g has nonvanishing derivative on M. (This globalizes the previous problem: use orientation and partitions of unity to sew together the local solutions.)

Solution. 1. This comes right out of the first local model definition of a manifold: there is an open neighborhood U of x, an open neighborhood V of 0 in \mathbb{R}^{n}, and a diffeomorphism $f: U \rightarrow V$ with $f^{-1}(M)=U \cap\left(\mathbb{R}^{k} \times 0\right)$. The map g is the composite of f^{-1} with $\mathbb{R}^{n} \rightarrow 0 \times \mathbb{R}^{n-k}$, and its derivative has rank $(n-k)$ everywhere because f^{-1} is of full rank everywhere.
2. Cover M by consistently oriented local models $\{U\}=\mathcal{O}$, and apply the previous problem to construct a candidate function g_{U} on each of them. Choose a partition of unity Φ subordinate to \mathcal{O}, and set $g=\sum_{U} \varphi_{U} \cdot g_{U}$. The orientation guarantees that the zero locus of g is as desired: wherever the open sets overlap, the relevant functions g_{U} all take the same sign, so their sum cannot cancel. (ECP)

Problem 2.2. Suppose that $M \subseteq \mathbb{R}^{n}$ is a compact $(n-1)$-manifold, and let M_{ε} be the following set of points:

$$
M_{\varepsilon}=\left\{\begin{array}{l|l}
x \in \mathbb{R}^{n} & \begin{array}{l}
\text { there is a } y \in M \text { such that } x=y \pm \varepsilon n_{y} \\
\text { where } n_{y} \text { is the normal vector to } M \text { at } y
\end{array}
\end{array}\right\}
$$

1. Show that $\varepsilon>0$ can be taken small enough so that M_{ε} is also a manifold.
2. Sketch what M_{ε} looks like for the Möbius band. Is the resulting manifold orientable?
3. Inspired by this, show in general that M_{ε} is always orientable, even if M is not.

Solution. 1. Cover M by local models such that the normal vectors in the domain of any given local model subtend a cone strictly smaller than $\pi / 2$ radians. Now let ε be smaller than one third of the distance from the center point in any local model to all other points on the manifold not in this model-a nonzero number by compactness. This choice of ε guarantees that each point $x \in M_{\varepsilon}$ can be uniquely written as $x=y \pm \varepsilon n_{y}$ for some choice of sign and point $y \in M$. Then, each local model on M gives rise to a pair of local models on M_{ε}, by postcomposing g with either the function $y \mapsto y+\varepsilon n_{y}$ or the function $y \mapsto y-\varepsilon n_{y}$.
2. The resulting manifold is orientable: it is a Möbius band with two twists in it, which is, in fact, diffeomorphic to a cylinder.
3. Give the charts on M_{ε} the orientation which faces away from M. This is consistent.
(ECP)

3 For submission to Handong Park

Problem 3.1. Show that a tangent space of a manifold $T_{x} M$ consists exactly of tangent vectors $\left(D_{0} \gamma\right)(1)$ where $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ is a curve in M with $\gamma(0)=x$.

Solution. Since $T_{x} M$ is defined using the local model, we solve this problem using that. A tangent vector $v \in T_{x} M$ is defined as the image of a tangent vector $v^{\prime} \in T_{0} \mathbb{R}^{n}$ under a local model map f which compares a neighborhood of 0 in \mathbb{R}^{n} with a neighborhood of x in \mathbb{R}^{n} and which carries exactly the hyperplane cut out by the first k coordinates to M. Accordingly, v^{\prime} must lie in the same hyperplane, and so the linear equation $\ell(t)=v^{\prime} \cdot t$ gives a curve in the local model with the right tangent vector which postcomposes to give a curve $f \circ \ell$ to give a curve in M with the right tangent vector.
(ECP)
Problem 3.2. Show that Stokes's theorem for manifolds can fail if the manifold is not compact. (Hint: find a manifold M that uses noncompactness to achieve $\partial M=0$.)

Solution. Consider any nonnegative smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is nonvanishing somewhere, and let F be its antiderivative. Its integral is nonvanishing, but the boundary of \mathbb{R} is \varnothing, hence we have a mismatch

$$
\begin{equation*}
\int_{\mathbb{R}} f \neq \int_{\partial \mathbb{R}} F=\int_{\varnothing} F=0 . \tag{ECP}
\end{equation*}
$$

Problem 3.3. In the course of solving Practice Midterm $\# 2.2$, you found a way to (recursively) express the volume of the unit ball in \mathbb{R}^{n}. Use the divergence theorem to relate the volume of the unit ball in \mathbb{R}^{n} to the $(n-1)$-dimensional area of the unit sphere in \mathbb{R}^{n}. You will probably want to make use of the $(n-1)$-form

$$
\left(\left(v_{1}, \ldots, v_{n-1}\right) \in T_{x} \mathbb{R}^{n}\right) \mapsto \operatorname{det}\left(v_{1}|\cdots| v_{n-1} \mid x\right)
$$

Solution. Write $\mathrm{d} A$ for the $(n-1)$-form in the hint, which is a volume form on S^{n-1}, the unit sphere in \mathbb{R}^{n}. Considered as an $(n-1)$-form on \mathbb{R}^{n}, it also has the property

$$
\mathrm{d} \mathrm{~d} A=n \mathrm{~d} V
$$

where $\mathrm{d} V$ is the standard volume form on \mathbb{R}^{n}. We thus apply Stokes's theorem:

$$
\begin{equation*}
n \int_{B^{n}} \mathrm{~d} V=\int_{B^{n}} n \mathrm{~d} V=\int_{B^{n}} \mathrm{~d} \mathrm{~d} A=\int_{\partial B^{n}} \mathrm{~d} A=\int_{S^{n-1}} \mathrm{~d} A \tag{ECP}
\end{equation*}
$$

4 For submission to Rohil Prasad

Problem 4.1. Consider the element $\omega \in \Omega^{2} \mathbb{R}^{3}$ defined by

$$
\omega=\frac{x \mathrm{~d} y \wedge \mathrm{~d} z+y \mathrm{~d} z \wedge \mathrm{~d} x+z \mathrm{~d} x \wedge \mathrm{~d} y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

1. Show that ω is closed.
2. Let $S_{r}=\left\{v \in \mathbb{R}^{3}:\|v\|=r\right\}$ be the sphere of length r vectors, a 2 -manifold. Verify the formula

$$
\omega_{p}\left(h_{1}, h_{2}\right)=\frac{\left\langle h_{1} \times h_{2}, p\right\rangle}{\|p\|^{3}}
$$

and conclude that ω restricted to S_{r} is r^{-2} times the volume element.
3. Make the calculation $\int_{S_{r}} \omega=4 \pi$, and conclude that ω is not exact. This element is the analogue of $d \theta$ in $\mathbb{R}^{2} \backslash\{0\}$, so we re-notate ω as $d \Theta$.
4. Let $p \in \mathbb{R}^{3}$ be any point and let $h \in T_{p} \mathbb{R}^{3}$ be a tangent vector collinear the origin, i.e., $h=\lambda p$ for some $\lambda \in \mathbb{R}$. Show $d \Theta_{p}\left(h, h^{\prime}\right)$ for any $h^{\prime} \in T_{p} \mathbb{R}^{3}$. Defining a generalized cone to be a manifold which is a union of rays through the origin (cf. N in Figure 5-10 in the book), show that $d \Theta$ integrated over a generalized cone always gives 0 .
5. Suppose a manifold M has the property that every ray through the origin intersects M exactly once. Define the generalized cone through $M, C(M)$, to be the collection of these rays. The solid angle subtended by M is defined to be the area of $C(M) \cap S_{1}$ (or, equivalently, r^{-2} times the area of $C(M) \cap S_{r}$ for any r. Prove that the solid angle subtended by M can be computed by

$$
\int_{M} \mathrm{~d} \Theta .
$$

(Note that this integral does not have a cone in it.) (Again, look at Figure 5-10 for a clue.)

Solution. 1. This is a matter of direct calculation:

$$
\mathrm{d} \omega=\left(\frac{\left(x^{2}+y^{2}+z^{2}\right)-3 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}+\frac{\left(x^{2}+y^{2}+z^{2}\right)-3 y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}+\frac{\left(x^{2}+y^{2}+z^{2}\right)-3 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}\right) \mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z=0
$$

2. The numerator of this fraction admits an expression by a determinant: $\left\langle h_{1} \times h_{2}, p\right\rangle=\operatorname{det}\left(h_{1}\left|h_{2}\right| p\right)$. On the other hand, the behavior of the standard 2-forms in the definition of ω can be arranged as follows:

$$
\omega_{p}\left(h_{1}, h_{2}\right)=\frac{1}{\|p\|^{3}} \operatorname{det}\left(\begin{array}{c|c|c}
p_{x} & & \\
p_{y} & h_{1} & h_{2} \\
p_{z} & &
\end{array}\right)
$$

Meanwhile, the definition of the volume element is to set the first column of the determinant form to a surface normal - and $p /\|p\|$ is such a vector for the sphere. The other two factors of $\|p\|$ give the final expression $\omega=r^{-2} \mathrm{~d} V$.
3. The integral of $\mathrm{d} V$ over a surface computes its surface area, which for a 2 -sphere of radius r is $4 \pi r^{2}$. Dividing out by r^{2}, we indeed compute

$$
\int_{S_{r}} \omega=\int_{S_{r}} \frac{1}{r^{2}} \mathrm{~d} V=\frac{1}{r^{2}} \cdot 4 \pi r^{2}=4 \pi .
$$

4. The tangent space to a generalized cone contains the direction $p /\|p\|$. This repeated column of the determinant causes it to vanish.
5. Stokes's theorem applied to this generalized cone shows $\int_{C(M)} \mathrm{d} \mathrm{d} \Theta=\int_{C(M)} 0=0$ to decompose as the sum of three components: the surface integral of $\mathrm{d} \Theta$ over M, the surface integral of $\mathrm{d} \Theta$ over $C(M) \cap S_{1}$, and the surface integral of $\mathrm{d} \Theta$ over $C(\partial M)$. The last surface integral vanishes because it is a 2 -dimensional generalized cone, as in the previous part, and hence we conclude

$$
\begin{equation*}
\int_{M} \mathrm{~d} \Theta=\int_{C(M) \cap S_{1}} \mathrm{~d} \Theta \tag{ECP}
\end{equation*}
$$

