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1 For submission to Thayer Anderson

Problem 1.1. Let g : A → Rp be a differentiable function defined on an open A ⊂ Rn, such that Dg is of
rank p everywhere on M = g−1(0), which we then know to be a manifold. Let f : Rn → R be an auxiliary
differentiable function which we hope to optimize on M . Show that if a maximum or minimum of f on M
occurs at a ∈M , show that there are λ1, . . . , λp ∈ R such that

∂f

∂xj
(a) =

p∑
i=1

λi
∂gi
∂xj

(a)

Start by giving a geometric interpretation of this condition.

Solution. The geometric statement of this claim is that the gradient of f must be perpendicular to the
manifold, M , at the the point a. Certainly, this claim must be true, or we could project ∇f(a0 along M
and move in that direction to increase or decrease the value of f , which would be a contradiction. Now we
will justify why the problem is equivalent to this necessarily true geometric claim.

Since M is a level curve of g, it follows that it is a level curve in each component, g1, g2, . . . gp. Thus
each ∇gi is perpendicular to M . Furthermore, because the matrix (Dag)′ = {∇g1|∇g2| · · · |∇gp} has full
rank by assumption, it follows that the ∇gi are linearly independent. Morever it follows that they span the
orthogonal complement of the manifold. Thus they form a basis. The claim

∂f

∂xj
(a) =

p∑
i=1

λi
∂gi
∂xj

(a)

can be therefore be interpreted to mean exactly that ∇f ∈ span{g1, . . . , gp}, which is the geometric claim
that I have already argued. (TA)

Problem 1.2. You can try to use Problem 1.1 to solve for such points a: the system of equations involving
λ give n equations in (n + 1) unkowns and then the restriction g(a) = 0 gives an additional equation. Try
to apply this idea in the following problem:

1. Let T : Rn → Rn be self-adjoint under the usual inner product, and suppose that in the usual
basis it takes the matrix form A = (aij), so that aij = aji. Set f(x) = 〈Tx, x〉 and show that
Dkf(x) = 2

∑n
j=1 akjx

j . By considering the maximum of 〈Tx, x〉 on Sn−1, show that there is x ∈ Sn−1

and λ ∈ R such that Tx = λx.

2. If V = {y ∈ Rn|〈x, y〉 = 0}, show that T (V ) ⊂ V and T : V → V is self-adjoint.

3. Show that T has a basis of eigenvectors.
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Solution. 1. We can compute f(x) by first computing Tx:
a11 a12 . . . a1n

a21 a22 . . .
...

. . .
. . .

...
an1 . . . . . . ann


(
x1

x2
... xn

)
=

a11x1 + · · ·+ a1nxn
...

an1x1 + · · ·+ annxn


Then f(x) is given by

f(x) = 〈T (x), x〉 =

n∑
j=1

(
xj

n∑
i=1

ajixi

)

To calculate Dkf(x) we take the partial derivative by xk. This kills all the terms without an xk (that
is, where i and j are not equal to k):

∂

∂xk

∑
j 6=k

xj∑
i 6=k

ajixi

+
∂

∂xk

∑
j=k

xj∑
i 6=k

ajixi

+
∂

∂xk

∑
j 6=k

(
xj
∑
i=k

ajixi

)
+

∂

∂xk
akkx

2
k

= 0 +
∂

∂xk

∑
i6=k

akixixk

+
∂

∂xk

∑
j 6=k

ajkxjxk

+
∂

∂xk
akkx

2
k

Due to self adjointness (aki = aik) we see that these the first two terms contribute equally, we and we
get

∂f(x)

∂xk
=

n∑
i=1

2akixi

Since Sn−1 is compact and f continuous, we can find a maximum of f on Sn−1. If we can construct
a function, g : Rn → R with derivative of rank 1 such that Sn−1 = g−1(0) then we will be guaranteed
a λ that satisfies the problem description. The function (g(x) = x21 + · · · + x2n − 1 is certainly such a
function. We see that Dg = (2x1 . . . 2xn). Then at the maximum point

∂f(x)

∂xk
=

n∑
i=1

2akixi = 2λxk

Thus T (x) = λx.

Take fixed x as in the previous part that maximizes 〈Tx, x〉 on Sn−1. Then, by self-adjointness

〈x, Ty〉 = 〈Tx, y〉 = 〈λx, y〉 = λ〈x, y〉 = 0

Therefore T (V ) ⊂ V . It follows that the induced operator T : V → V is self-adjoint because T is self-adjoint.

By the spectral theorem for self-adjoint operators, T admits a basis of eigenvectors. (TA)

2 For submission to Davis Lazowski

Problem 2.1. 1. In class, we claimed that the zero-locus of a sufficiently nice function formed a manifold.
Show a partial converse to this: for M ⊆ Rn a k–manifold and x ∈M a point on it, show there exists an
open neighborhood A ⊆ Rn of x and a differentiable function g : A→ Rn−k such that g−1(0) = A∩M
and the derivative of g is of rank (n− k) on this locus.
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2. If M ⊆ Rn is an orientable (n−1)–manifold, show that there is an open set A ⊆ Rn and a differentiable
function g : A→ R so that M = g−1(0) and g has nonvanishing derivative on M . (This globalizes the
previous problem: use orientation and partitions of unity to sew together the local solutions.)

Solution. 1. This comes right out of the first local model definition of a manifold: there is an open
neighborhood U of x, an open neighborhood V of 0 in Rn, and a diffeomorphism f : U → V with
f−1(M) = U ∩ (Rk × 0). The map g is the composite of f−1 with Rn → 0× Rn−k, and its derivative
has rank (n− k) everywhere because f−1 is of full rank everywhere.

2. Cover M by consistently oriented local models {U} = O, and apply the previous problem to construct
a candidate function gU on each of them. Choose a partition of unity Φ subordinate to O, and set
g =

∑
U ϕU · gU . The orientation guarantees that the zero locus of g is as desired: wherever the open

sets overlap, the relevant functions gU all take the same sign, so their sum cannot cancel. (ECP)

Problem 2.2. Suppose that M ⊆ Rn is a compact (n − 1)–manifold, and let Mε be the following set of
points:

Mε =

{
x ∈ Rn

∣∣∣∣ there is a y ∈M such that x = y ± εny,
where ny is the normal vector to M at y

}
.

1. Show that ε > 0 can be taken small enough so that Mε is also a manifold.

2. Sketch what Mε looks like for the Möbius band. Is the resulting manifold orientable?

3. Inspired by this, show in general that Mε is always orientable, even if M is not.

Solution. 1. Cover M by local models such that the normal vectors in the domain of any given local model
subtend a cone strictly smaller than π/2 radians. Now let ε be smaller than one third of the distance
from the center point in any local model to all other points on the manifold not in this model—a
nonzero number by compactness. This choice of ε guarantees that each point x ∈Mε can be uniquely
written as x = y ± εny for some choice of sign and point y ∈ M . Then, each local model on M gives
rise to a pair of local models on Mε, by postcomposing g with either the function y 7→ y + εny or the
function y 7→ y − εny.

2. The resulting manifold is orientable: it is a Möbius band with two twists in it, which is, in fact,
diffeomorphic to a cylinder.

3. Give the charts on Mε the orientation which faces away from M . This is consistent. (ECP)

3 For submission to Handong Park

Problem 3.1. Show that a tangent space of a manifold TxM consists exactly of tangent vectors (D0γ)(1)
where γ : (−ε, ε)→M is a curve in M with γ(0) = x.

Solution. Since TxM is defined using the local model, we solve this problem using that. A tangent vector
v ∈ TxM is defined as the image of a tangent vector v′ ∈ T0Rn under a local model map f which compares
a neighborhood of 0 in Rn with a neighborhood of x in Rn and which carries exactly the hyperplane cut out
by the first k coordinates to M . Accordingly, v′ must lie in the same hyperplane, and so the linear equation
`(t) = v′ · t gives a curve in the local model with the right tangent vector which postcomposes to give a curve
f ◦ ` to give a curve in M with the right tangent vector. (ECP)

Problem 3.2. Show that Stokes’s theorem for manifolds can fail if the manifold is not compact. (Hint: find
a manifold M that uses noncompactness to achieve ∂M = 0.)
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Solution. Consider any nonnegative smooth function f : R → R which is nonvanishing somewhere, and let
F be its antiderivative. Its integral is nonvanishing, but the boundary of R is ∅, hence we have a mismatch∫

R
f 6=

∫
∂R
F =

∫
∅
F = 0. (ECP)

Problem 3.3. In the course of solving Practice Midterm #2.2, you found a way to (recursively) express the
volume of the unit ball in Rn. Use the divergence theorem to relate the volume of the unit ball in Rn to the
(n− 1)–dimensional area of the unit sphere in Rn. You will probably want to make use of the (n− 1)–form

((v1, . . . , vn−1) ∈ TxRn) 7→ det(v1| · · · |vn−1|x).

Solution. Write dA for the (n − 1)–form in the hint, which is a volume form on Sn−1, the unit sphere in
Rn. Considered as an (n− 1)–form on Rn, it also has the property

d dA = n dV,

where dV is the standard volume form on Rn. We thus apply Stokes’s theorem:

n

∫
Bn

dV =

∫
Bn

n dV =

∫
Bn

d dA =

∫
∂Bn

dA =

∫
Sn−1

dA. (ECP)

4 For submission to Rohil Prasad

Problem 4.1. Consider the element ω ∈ Ω2R3 defined by

ω =
x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

(x2 + y2 + z2)3/2
.

1. Show that ω is closed.

2. Let Sr = {v ∈ R3 : ‖v‖ = r} be the sphere of length r vectors, a 2–manifold. Verify the formula

ωp(h1, h2) =
〈h1 × h2, p〉
‖p‖3

,

and conclude that ω restricted to Sr is r−2 times the volume element.

3. Make the calculation
∫
Sr
ω = 4π, and conclude that ω is not exact. This element is the analogue of dθ

in R2 \ {0}, so we re-notate ω as dΘ.

4. Let p ∈ R3 be any point and let h ∈ TpR3 be a tangent vector collinear the origin, i.e., h = λp for
some λ ∈ R. Show dΘp(h, h′) for any h′ ∈ TpR3. Defining a generalized cone to be a manifold which
is a union of rays through the origin (cf. N in Figure 5-10 in the book), show that dΘ integrated over
a generalized cone always gives 0.

5. Suppose a manifold M has the property that every ray through the origin intersects M exactly once.
Define the generalized cone through M , C(M), to be the collection of these rays. The solid angle
subtended by M is defined to be the area of C(M) ∩ S1 (or, equivalently, r−2 times the area of
C(M) ∩ Sr for any r). Prove that the solid angle subtended by M can be computed by∫

M

dΘ.

(Note that this integral does not have a cone in it.) (Again, look at Figure 5-10 for a clue.)
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Solution. 1. This is a matter of direct calculation:

dω =

(
(x2 + y2 + z2)− 3x2

(x2 + y2 + z2)5/2
+

(x2 + y2 + z2)− 3y2

(x2 + y2 + z2)5/2
+

(x2 + y2 + z2)− 3z2

(x2 + y2 + z2)5/2

)
dx ∧ dy ∧ dz = 0.

2. The numerator of this fraction admits an expression by a determinant: 〈h1 × h2, p〉 = det(h1 | h2 | p).
On the other hand, the behavior of the standard 2–forms in the definition of ω can be arranged as
follows:

ωp(h1, h2) =
1

‖p‖3
det

 px
py h1 h2
pz

 .

Meanwhile, the definition of the volume element is to set the first column of the determinant form to
a surface normal — and p/‖p‖ is such a vector for the sphere. The other two factors of ‖p‖ give the
final expression ω = r−2 dV .

3. The integral of dV over a surface computes its surface area, which for a 2–sphere of radius r is 4πr2.
Dividing out by r2, we indeed compute∫

Sr

ω =

∫
Sr

1

r2
dV =

1

r2
· 4πr2 = 4π.

4. The tangent space to a generalized cone contains the direction p/‖p‖. This repeated column of the
determinant causes it to vanish.

5. Stokes’s theorem applied to this generalized cone shows
∫
C(M)

d dΘ =
∫
C(M)

0 = 0 to decompose as

the sum of three components: the surface integral of dΘ over M , the surface integral of dΘ over
C(M) ∩ S1, and the surface integral of dΘ over C(∂M). The last surface integral vanishes because it
is a 2–dimensional generalized cone, as in the previous part, and hence we conclude∫

M

dΘ =

∫
C(M)∩S1

dΘ. (ECP)
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