
Homework #7

Math 25b

Due: April 19th, 2017

Guidelines:

• You must type up your solutions to this assignment in LATEX. There’s a template available on the
course website.

• This homework is divided into four parts. You will turn each part in to a separate CA’s mailbox on
the second floor of the science center. So, be sure to do the parts on separate pieces of paper.

• If your submission to any particular CA takes multiple pages, then staple them together. If you don’t
own one, a stapler is available in the Cabot Library in the Science Center.

• Be sure to put your name at the top of each part, so that we know who to score!

• If you collaborate with other students, please announce that somewhere (ideally: next to the problems
you collaborated on) so that we don’t get suspicious of hyper-similar answers.

Failure to meet these guidelines may result in loss of points. (Staple your pages!)1

1 For submission to Thayer Anderson

Problem 1.1. Let Rout > Rin > 0 be the positive radii of two concentric circles in R2, both centered at the
origin. Call the circles Cout and Cin. Construct a 2–chain σ with ∂σ = Cout − Cin.

Problem 1.2. Again fixing a radius R, let CR be the circle of radius R centered at the origin.

1. Show
∫
CR

dθ = 2π, independent of R.

2. Conclude that there is no 2–chain σ in R2 \ {0} for which ∂σ = CR.2

2 For submission to Davis Lazowski

Problem 2.1. In Problem 2.2 of the previous assignment, you calculated the polar 1–form dθ in terms of
dx and dy, where you found

dθ =
−y

x2 + y2
dx+

x

x2 + y2
dy.

A useful consequence of this is that dθ extends to a smooth 1–form on all of R2 \ {0}.

1. Use this result to show that there is no way to “correct” the deleted strip R2 \ (R≥0×{0}): show that
if f is some other function with df = dθ, then f = θ + c for some constant c.

1This version of the homework dates from April 18, 2017.
2Congratulations! You just solved a problem from Math 231a.
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2. Let ω be a 1–form on R2 \ {0} with dω = 0. Show that there is a constant λ and a function
g : R2 \ {0} → R with

ω = λ dθ + dg,

i.e., the un-preimage-able 1–form dθ is the only defect of the Poincaré Lemma on R2 \ {0}.

Problem 2.2. Let c be a singular k–cube, let ω be a k–form, and write

c∗ω = f(x1, . . . , xk) dx1 ∧ · · · ∧ dxk

for the pullback. In class, we defined the integral of ω over c by the pullback formula∫
c

ω =

∫
[0,1]×k

f dx1 · · · dxk.

Let r : [0, 1]×k → [0, 1]×k be a C∞ bijection with detDxr > 0 for all x. Show∫
c

ω =

∫
c◦r

ω,

i.e., the integral of a form is independent of the parametrization of its domain.

Problem 2.3. 1. Let c be a singular 1–cube in R2 \ {0} with c(0) = c(1), and let C1 be the singular
1–cube parametrizing the unit circle. Show that there is a number n and a 2–chain σ such that
∂σ = nC1 − c.3

2. Use Stokes’s theorem to show that the n associated in this way to c is unique—it does not change even
if you choose a different 2–chain σ.

3 For submission to Handong Park

Problem 3.1. For ω a nonzero k–form, show that there is a singular k–cube c with
∫
c
ω 6= 0. Using ∂∂σ = 0,

conclude d( dω) = 0 (i.e., mixed partials commute).

Problem 3.2. Let f(z) = zn +an−1z
n−1 + · · ·+a1z+a0 be a complex polynomial, considered as a function

f : R2 → R2. Let CR denote the circle centered at the origin of radius R, and consider the curve f ◦ CR.

1. Define a singular 2–cube σ by the formula

σ(t, x) = t · (f ◦ CR(x)) + (1− t) ·R(cos(2πnx) + i sin(2πnx)).

Show that this interpolates between f ◦ CR and nCR in the sense that ∂σ = f ◦ CR − nCR.

2. Show that for R� 0, σ factors through R2 \ {0}.

3. Conclude from Problem 1.2 the fundamental theorem of algebra: the polynomial f has a root in C.

4 For submission to Rohil Prasad

In this section, we continue the analysis of functions on the complex plane initiated above. This is quite
long—good luck!

3Spivak suggests that you split the domain of c into subintervals with either nonnegative y–values or nonnegative y–values.
This is a good idea, but it really requires you to use the definition of a singular 1–cube as a smooth function, so beware.
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Problem 4.1. A function f : C→ C is said to be complex-differentiable when the limit

lim
h→0

f(z + h)− f(z)

h

exists. Note that this is considerably more complicated than being differentiable as a function R2 → R2, since
we aren’t taking the norm in the denominator, and so we are multiplying two complex numbers together,
which has funny effects. We shorthand “f is continuously complex-differentiable on an open set A ⊆ C” to
“f is holomorphic on A”.

1. Show that f(z) = z is holomorphic and that f(z) = z is not. Show that the sum, product, and inverse
(where nonzero) of holomorphic functions are holomorphic.

2. Write an holomorphic function f as f(x+ iy) = u(x+ iy) + iv(x+ iy) for two functions u, v : R2 → R.
Demonstrate the Cauchy–Riemann equations:4

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

3. Let T : C→ C be a R–linear transformation, where C is considered as a real vector space on the basis
{1, i}, yielding a matrix presentation

T =

(
a b
c d

)
.

Show that T is multiplication by a complex number if and only if a = d and b = −c. Compare this
with the previous part: a generic holomorphic function f : C → C has both complex derivative f ′(a)
at a point as well as a multivariate derivative Daf . How are these related?

4. Extend the standard operations on 1–forms to complex 1–forms ω + iη by the formulas

d(ω + iη) = dω + i dη,

∫
c

(ω + iη) =

∫
c

ω + i

∫
c

η, dz = dx+ i dy,

(ω + iη) ∧ (ψ + iϕ) = (ω ∧ ψ − η ∧ ϕ) + i(ω ∧ ϕ+ η ∧ ψ).

Show that d(f dz) = 0 if and only if f : C→ C satisfies the Cauchy–Riemann equations.

5. (Cauchy Integral Theorem:) If f is holomorphic on A and c is a closed curve with c = ∂σ for some
2–chain σ, then

∫
c
f dz = 0.

6. In the example f(z) = 1/z, show f · dz = i dθ + dh for some auxiliary function h : C \ {0} → R. Use
Problem 1.2 to conclude ∫

CR

f · dz = 2πin.

7. Let f be holomorphic on {z : |z| < 1}, and define g(z) = f(z)/z which is holomorphic on {z : 0 < |z| <
1}. For 0 < Rin < Rout < 1 as in Problem 1.1, conclude∫

Cin

f(z)

z
dz =

∫
Cout

f(z)

z
dz.

Finally, take the limit Rin → 0 and conclude the Cauchy Integral Formula:

f(0) =
1

2πi

∫
Cout

f(z)

z
dz.

This formula is super remarkable: note that the value of f at 0 is completely determined by its values
on the unit circle—all of which are very far away from 0!

4Hint: make the approach for h → 0 along the two standard axes.
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