Homework \#7

Math 25b
Due: April 19th, 2017

Guidelines:

- You must type up your solutions to this assignment in $\mathrm{A}_{\mathrm{A}} \mathrm{EX}$. There's a template available on the course website.
- This homework is divided into four parts. You will turn each part in to a separate CA's mailbox on the second floor of the science center. So, be sure to do the parts on separate pieces of paper.
- If your submission to any particular CA takes multiple pages, then staple them together. If you don't own one, a stapler is available in the Cabot Library in the Science Center.
- Be sure to put your name at the top of each part, so that we know who to score!
- If you collaborate with other students, please announce that somewhere (ideally: next to the problems you collaborated on) so that we don't get suspicious of hyper-similar answers.

Failure to meet these guidelines may result in loss of points. (Staple your pages!) ${ }^{1}$

1 For submission to Thayer Anderson

Problem 1.1. Let $R_{\text {out }}>R_{\text {in }}>0$ be the positive radii of two concentric circles in \mathbb{R}^{2}, both centered at the origin. Call the circles $C_{\text {out }}$ and $C_{\text {in }}$. Construct a 2 -chain σ with $\partial \sigma=C_{\text {out }}-C_{\text {in }}$.

Problem 1.2. Again fixing a radius R, let C_{R} be the circle of radius R centered at the origin.

1. Show $\int_{C_{R}} \mathrm{~d} \theta=2 \pi$, independent of R.
2. Conclude that there is no 2 -chain σ in $\mathbb{R}^{2} \backslash\{0\}$ for which $\partial \sigma=C_{R}$. ${ }^{2}$

2 For submission to Davis Lazowski

Problem 2.1. In Problem 2.2 of the previous assignment, you calculated the polar 1 -form $\mathrm{d} \theta$ in terms of $\mathrm{d} x$ and $\mathrm{d} y$, where you found

$$
\mathrm{d} \theta=\frac{-y}{x^{2}+y^{2}} \mathrm{~d} x+\frac{x}{x^{2}+y^{2}} \mathrm{~d} y .
$$

A useful consequence of this is that $\mathrm{d} \theta$ extends to a smooth 1 -form on all of $\mathbb{R}^{2} \backslash\{0\}$.

1. Use this result to show that there is no way to "correct" the deleted strip $\mathbb{R}^{2} \backslash\left(\mathbb{R}_{\geq 0} \times\{0\}\right)$: show that if f is some other function with $\mathrm{d} f=\mathrm{d} \theta$, then $f=\theta+c$ for some constant c.

[^0]2. Let ω be a 1 -form on $\mathbb{R}^{2} \backslash\{0\}$ with $\mathrm{d} \omega=0$. Show that there is a constant λ and a function $g: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}$ with
$$
\omega=\lambda \mathrm{d} \theta+\mathrm{d} g
$$
i.e., the un-preimage-able 1 -form $\mathrm{d} \theta$ is the only defect of the Poincaré Lemma on $\mathbb{R}^{2} \backslash\{0\}$.

Problem 2.2. Let c be a singular k-cube, let ω be a k-form, and write

$$
c^{*} \omega=f\left(x_{1}, \ldots, x_{k}\right) \mathrm{d} x_{1} \wedge \cdots \wedge \mathrm{~d} x_{k}
$$

for the pullback. In class, we defined the integral of ω over c by the pullback formula

$$
\int_{c} \omega=\int_{[0,1] \times k} f \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{k}
$$

Let $r:[0,1]^{\times k} \rightarrow[0,1]^{\times k}$ be a C^{∞} bijection with $\operatorname{det} D_{x} r>0$ for all x. Show

$$
\int_{c} \omega=\int_{c o r} \omega
$$

i.e., the integral of a form is independent of the parametrization of its domain.

Problem 2.3. 1. Let c be a singular 1-cube in $\mathbb{R}^{2} \backslash\{0\}$ with $c(0)=c(1)$, and let C_{1} be the singular 1 -cube parametrizing the unit circle. Show that there is a number n and a 2 -chain σ such that $\partial \sigma=n C_{1}-c .{ }^{3}$
2. Use Stokes's theorem to show that the n associated in this way to c is unique - it does not change even if you choose a different 2 -chain σ.

3 For submission to Handong Park

Problem 3.1. For ω a nonzero k-form, show that there is a singular k-cube c with $\int_{c} \omega \neq 0$. Using $\partial \partial \sigma=0$, conclude $\mathrm{d}(\mathrm{d} \omega)=0$ (i.e., mixed partials commute).

Problem 3.2. Let $f(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ be a complex polynomial, considered as a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Let C_{R} denote the circle centered at the origin of radius R, and consider the curve $f \circ C_{R}$.

1. Define a singular 2 -cube σ by the formula

$$
\sigma(t, x)=t \cdot\left(f \circ C_{R}(x)\right)+(1-t) \cdot R(\cos (2 \pi n x)+i \sin (2 \pi n x))
$$

Show that this interpolates between $f \circ C_{R}$ and $n C_{R}$ in the sense that $\partial \sigma=f \circ C_{R}-n C_{R}$.
2. Show that for $R \gg 0, \sigma$ factors through $\mathbb{R}^{2} \backslash\{0\}$.
3. Conclude from Problem 1.2 the fundamental theorem of algebra: the polynomial f has a root in \mathbb{C}.

4 For submission to Rohil Prasad

In this section, we continue the analysis of functions on the complex plane initiated above. This is quite long-good luck!

[^1]Problem 4.1. A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is said to be complex-differentiable when the limit

$$
\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}
$$

exists. Note that this is considerably more complicated than being differentiable as a function $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, since we aren't taking the norm in the denominator, and so we are multiplying two complex numbers together, which has funny effects. We shorthand " f is continuously complex-differentiable on an open set $A \subseteq \mathbb{C}$ " to " f is holomorphic on A ".

1. Show that $f(z)=z$ is holomorphic and that $f(z)=\bar{z}$ is not. Show that the sum, product, and inverse (where nonzero) of holomorphic functions are holomorphic.
2. Write an holomorphic function f as $f(x+i y)=u(x+i y)+i v(x+i y)$ for two functions $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Demonstrate the Cauchy-Riemann equations: ${ }^{4}$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

3. Let $T: \mathbb{C} \rightarrow \mathbb{C}$ be a \mathbb{R}-linear transformation, where \mathbb{C} is considered as a real vector space on the basis $\{1, i\}$, yielding a matrix presentation

$$
T=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Show that T is multiplication by a complex number if and only if $a=d$ and $b=-c$. Compare this with the previous part: a generic holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ has both complex derivative $f^{\prime}(a)$ at a point as well as a multivariate derivative $D_{a} f$. How are these related?
4. Extend the standard operations on 1 -forms to complex 1-forms $\omega+i \eta$ by the formulas

$$
\begin{gathered}
\mathrm{d}(\omega+i \eta)=\mathrm{d} \omega+i \mathrm{~d} \eta, \quad \int_{c}(\omega+i \eta)=\int_{c} \omega+i \int_{c} \eta, \quad \mathrm{~d} z=\mathrm{d} x+i \mathrm{~d} y \\
(\omega+i \eta) \wedge(\psi+i \varphi)=(\omega \wedge \psi-\eta \wedge \varphi)+i(\omega \wedge \varphi+\eta \wedge \psi)
\end{gathered}
$$

Show that $\mathrm{d}(f \mathrm{~d} z)=0$ if and only if $f: \mathbb{C} \rightarrow \mathbb{C}$ satisfies the Cauchy-Riemann equations.
5. (Cauchy Integral Theorem:) If f is holomorphic on A and c is a closed curve with $c=\partial \sigma$ for some 2 -chain σ, then $\int_{c} f \mathrm{~d} z=0$.
6. In the example $f(z)=1 / z$, show $f \cdot \mathrm{~d} z=i \mathrm{~d} \theta+\mathrm{d} h$ for some auxiliary function $h: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$. Use Problem 1.2 to conclude

$$
\int_{C_{R}} f \cdot \mathrm{~d} z=2 \pi i n
$$

7. Let f be holomorphic on $\{z:|z|<1\}$, and define $g(z)=f(z) / z$ which is holomorphic on $\{z: 0<|z|<$ $1\}$. For $0<R_{\text {in }}<R_{\text {out }}<1$ as in Problem 1.1, conclude

$$
\int_{C_{\text {in }}} \frac{f(z)}{z} \mathrm{~d} z=\int_{C_{\text {out }}} \frac{f(z)}{z} \mathrm{~d} z
$$

Finally, take the limit $R_{\text {in }} \rightarrow 0$ and conclude the Cauchy Integral Formula:

$$
f(0)=\frac{1}{2 \pi i} \int_{C_{\text {out }}} \frac{f(z)}{z} \mathrm{~d} z
$$

This formula is super remarkable: note that the value of f at 0 is completely determined by its values on the unit circle - all of which are very far away from 0 !

[^2]
[^0]: ${ }^{1}$ This version of the homework dates from April 18, 2017.
 ${ }^{2}$ Congratulations! You just solved a problem from Math 231a.

[^1]: ${ }^{3}$ Spivak suggests that you split the domain of c into subintervals with either nonnegative y-values or nonnegative y-values. This is a good idea, but it really requires you to use the definition of a singular 1-cube as a smooth function, so beware.

[^2]: ${ }^{4}$ Hint: make the approach for $h \rightarrow 0$ along the two standard axes.

