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1 For submission to Thayer Anderson

Problem 1.1. Let Rout > Rin > 0 be the positive radii of two concentric circles in R2, both centered at the
origin. Call the circles Cout and Cin. Construct a 2–chain σ with ∂σ = Cout − Cin.

Solution. Here it is:

σ(r, s) = (r ·Rin + (1− r) ·Rout) ·
(

cos 2πs
sin 2πs

)
.

The 1–chain ∂σ has the following four edges:

• Fix r = 0: this gives σ(0, s) = Rout ·
(

cos 2πs
sin 2πs

)
= Cout.

• Fix r = 1: this gives σ(1, s) = Rin ·
(

cos 2πs
sin 2πs

)
= Cin.

• Fix s = 0: this gives σ(r, 0) = (r ·Rin + (1− r) ·Rout) ·
(

1
0

)
.

• Fix s = 1: this also gives σ(r, 0) = (r ·Rin + (1− r) ·Rout) ·
(

1
0

)
.

In all, this indeed gives ∂σ = Cout − Cin. (ECP)

Problem 1.2. Again fixing a radius R, let CR be the circle of radius R centered at the origin.

1. Show
∫
CR

dθ = 2π, independent of R.

2. Conclude that there is no 2–chain σ in R2 \ {0} for which ∂σ = CR.

Solution. 1. This is a matter of doing the calculation. Parametrizing CR by

CR(t) = R ·
(

cos 2πs
sin 2πs

)
,

we get

∫
CR

dθ =

∫ 1

0

( x

x2 + y2
dy − y

x2 + y2
dx

)∣∣∣∣ cos 2πs
sin 2πs


(
−2π sin 2πs
2π cos 2πs

) ds

=

∫ 1

0

(
cos 2πs

cos2 2πs+ sin2 2πs
(2π cos 2πs)− sin 2πs

cos2 2πs+ sin2 2πs
(−2π sin 2πs)

)
ds

=

∫ 1

0

2π ds = 2π.
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2. If this were possible for some fixed choice of R, then Stokes’s theorem would give

2π =

∫
CR

dθ =

∫
∂σ

dθ =

∫
σ

d dθ.

On the other hand,

d

(
x√

x2 + y2
dy − y√

x2 + y2
dx

)
= 0. (ECP)

2 For submission to Davis Lazowski

Problem 2.1. In Problem 2.2 of the previous assignment, you calculated the polar 1–form dθ in terms of
dx and dy, where you found

dθ =
−y

x2 + y2
dx+

x

x2 + y2
dy.

A useful consequence of this is that dθ extends to a smooth 1–form on all of R2 \ {0}.

1. Use this result to show that there is no way to “correct” the deleted strip R2 \ (R≥0×{0}): show that
if f is some other function with df = dθ, then f = θ + c for some constant c.

2. Let ω be a 1–form on R2 \ {0} with dω = 0. Show that there is a constant λ and a function
g : R2 \ {0} → R with

ω = λ dθ + dg,

i.e., the un-preimage-able 1–form dθ is the only defect of the Poincaré Lemma on R2 \ {0}.

Solution. 1. Then df − dθ = 0 on the defined region. So d(f − θ) = 0 on this region. Therefore, f − θ is
constant on this region. Now f = θ + c on this region.

2. Denote the filled-in rectangle of side lengths a, b around the origin by Sa,b. I claim if and only if∫
∂Sa,b

ν = 0, then ν is exact. If ν is exact, apply Stokes’ theorem.

If
∫
∂Sa,b

ν = 0, then also
∫
∂Sa′,b′

ν = 0. To show this,∫
∂Sa,b

ν −
∫
∂Sa′,b′

ν =

∫
∂(Sa′,b′∆Sa,b)

ν

Where the symmetric difference is a union of closed regions not including the origin, so apply Stokes’
theorem again.

Finally, choose a point p0. For any point p not the origin, there exists a rectangle for which p0, p
are both on the boundary. The size of this rectangle does not matter, as shown above, and since∫
∂Sa,b

ν = 0, also we know that if we integrate from p to p0 following one route along the rectangle

we’ll get the same result as integrating from p to p0 along the other route: basically, we have proven that
the integral from p to p0 is ’path-independent’ along a rectangular path. So choose some rectangular
path P (p, p0) to integrate along. Let

g(p) =

∫
P (p0,p)

ν

Quick differentiation verifies dg = ν. Therefore our claim is proved.

Now let

λ :=
1

2π

∫
∂Sa,b

ω
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Clearly
∫
Cr
ω =

∫
∂Sa,b

ω and
∫
Cr
dθ =

∫
∂Sa,b

dθ, by the exact same application of Stokes’ theorem as

above. So with this definition of λ, then ∫
∂Sa,b

ω − λdθ = 0

Now apply our lemma with ω − λdθ = ν. (DL)

Problem 2.2. Let c be a singular k–cube, let ω be a k–form, and write

c∗ω = f(x1, . . . , xk) dx1 ∧ · · · ∧ dxk

for the pullback. In class, we defined the integral of ω over c by the pullback formula∫
c

ω =

∫
[0,1]×k

f dx1 · · · dxk.

Let r : [0, 1]×k → [0, 1]×k be a C∞ bijection with detDxr > 0 for all x. Show∫
c

ω =

∫
c◦r

ω,

i.e., the integral of a form is independent of the parametrization of its domain.

Solution. First of all,

[c ◦ r]∗ω = r∗c∗ω = r∗[c∗ω] = r∗[fdx1 ∧ · · · ∧ dxk] = (f ◦ r)(det r′)dx1 ∧ · · · ∧ dxk

Therefore, ∫
c◦r

ω =

∫
[0,1]×k

(f ◦ r)(det r′)dx1 . . . dxk

This is just
∫

[0,1]×k fdx1 . . . dxk under the substitution ~x → r(~x′), since r is orientation-preserving, so

substitute back to get the required equality. (DL)

Problem 2.3. 1. Let c be a singular 1–cube in R2 \ {0} with c(0) = c(1), and let C1 be the singular
1–cube parametrizing the unit circle. Show that there is a number n and a 2–chain σ such that
∂σ = nC1 − c.1

2. Use Stokes’s theorem to show that the n associated in this way to c is unique—it does not change even
if you choose a different 2–chain σ.

Solution. 1. We know in polar coordinates we can express c(t) = (rc(t), θc(t). Therefore c∗dθ = ∂θc
∂t dt.

Therefore

θc(t) =

∫ t

0

c∗dθ

Where we have rotated, without loss of generality, so θ(0) = 0.

Now by problem 1.2, observe that
∫
c
dθ therefore is an integral multiple of 2π, where n is the winding

number around 0 of how many times it goes around 0. Here we implicitly use Stokes’ theorem.

Here is the intuitive picture we’re using: each time c winds around 0, we need another circle C to
cancel out the ‘hole’ at 0.

Now reduce to the case where n = 1, and c winds around 0 precisely once.

1Spivak suggests that you split the domain of c into subintervals with either nonnegative y–values or nonnegative y–values.
This is a good idea, but it really requires you to use the definition of a singular 1–cube as a smooth function, so beware.
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In this case, we need to find ∂σ = C − c. Intuitively, we know what σ needs to ’look like’: we have a
circle C and a deformed circle c, and σ is just the region between them.

This motivates us to consider a deformation C between the two circles.

Now let C(x, t) := [0, 1]× [0, 1]→ R2 \ {0} be defined by

C(x, t) = (1− t)c(x) + tC(x)

So that C(x, 0) = c(x) and C(x, 1) = C(x).

So

∂C = (C2,0 − C1,0)− (C2,1 − C1,1) = (C(0, x)− C(x, 0))− (C(1, x)− C(x, 1))

= [C − c] + [C(0, x)− C(1, x)] = C − c

This intuition lets us generalise to the general case. This ‘straight-line’ movement between C and c
can only be problematic if it moves between two points C(x) and c(x) on a line including zero. To
prevent this, we align the θ components of c and C so that the straight-line movement is just scaling
in r.

Break [0, 1] into n intervals [ti, ti+1] by letting t0 = 0, again without loss of generality assuming
cθ(t0) = 0, and recursively defining ti+1 as the unique least point with the following properties:

(a) ti+1 > t0

(b) cθ(ti+1) = 0

(c) If t > ti+1 and cθ(t) = 0, then cθ[ti+1, t) = [0, 2π).

It’s easy to verify that this is the same n as the winding number gives us; for instance, by part b).

We’ll compose several deformations, which we could write as one two-chain. First, scale [ti, ti+1] to
[0, 1].

Next, deform Cθ to cθ. Cθ is the identity plus scaling, so we might as well consider cθ(
t

2π ) and deform
it to the identity. We can do this because we can deform cθ(

t
2π ) reversibly to a single point by shrinking

smoothly, and we can do the same for the identity.

Finally, send
hi(x, t) := ((1− t)cr(x), cθ(x)) + (tCr(x), cθ(x))

The composition of these maps provides the requisite chain over the sub-interval. Summing them gets
the answer desired.

2. Suppose we can find chains associated to n, n′, say σ, σ′. Then∫
∂σ′

dθ −
∫
∂σ

dθ = 2π(n− n′)

But apply Stokes’ theorem to get that the left hand side must be zero since ddθ = 0 and the symmetric
difference of σ′, σ does not include zero, therefore n = n′. (DL)

3 For submission to Handong Park

Problem 3.1. For ω a nonzero k–form, show that there is a singular k–cube c with
∫
c
ω 6= 0. Using ∂∂σ = 0,

conclude d( dω) = 0 (i.e., mixed partials commute).

Solution. Confusingly, the ω in the first and second sentences are not identical in function. We treat them
in turn:
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1. Expand ω in terms of standard k–forms: ω =
∑
J ωJ dxJ1 ∧ · · · ∧ dxJk . Since ω is nonzero at x, at

least one of these summands is nonzero; fix some particular J for which this is the case, let ε > 0 be
some radius for which ‖x − y‖ < ε implies ωJ(y) 6= 0, and consider a k–cube c centered at x in the
J–plane of diagonal radius ε′ which is entirely contained in this ε–ball. In fact, by continuity of ωJ
it follows that either ωJ > 0 or ωJ < 0 everywhere on c; by replacing ωJ with −ωJ if necessary, we
assume that ωJ is everywhere positive. Then, consider the integral∫

c

ω =

∫
[−ε′,ε′]×k

ωJ(c(t1, . . . , tk)) dt1 · · · dtk.

This is a standard integral of a positive function over a positive volume domain, so positive.

2. Let ξ be any (k− 2)–form, and let ω = d dξ be its double derivative. Suppose that ω 6= 0, and run the
argument above to produce a singular k–cube c on which

∫
c
ω 6= 0. Applying Stokes’s theorem twice,

we have ∫
c

ω =

∫
c

d dξ =

∫
∂c

dξ =

∫
∂∂c

ξ =

∫
∅
ξ = 0.

This contradicts the first part, so it must have been the case that ω = 0 all along. (ECP)

Problem 3.2. Let f(z) = zn+an−1z
n−1 + · · ·+a1z+a0 be a complex polynomial, considered as a function

f : R2 → R2. Let CR denote the circle centered at the origin of radius R, and consider the curve f ◦ CR.

1. Define a singular 2–cube σ by the formula

σ(t, x) = t · (f ◦ CR(x)) + (1− t) ·R(cos(2πnx) + i sin(2πnx)).

Show that this interpolates between f ◦ CR and nCR in the sense that ∂σ = f ◦ CR − nCR.

2. Show that for R� 0, σ factors through R2 \ {0}.

3. Conclude from Problem 1.2 the fundamental theorem of algebra: the polynomial f has a root in C.

Solution. 1. This is the same construction used in Problem 1.1, and it works for the same reason.

2. Last semester we showed that nonzero polynomials are nonzero as functions, and we can reuse that
trick here. We impose the following constraint:

R > |a0|+ |a1|+ · · ·+ |an−1|+ 1.

This feeds into a triangle inequality application as follows:

|a0 + a1z + · · ·+ an−1z
n−1| ≤ (|a0|+ |a1|+ · · ·+ |an−1|)|z|n−1 < |z|n.

Applying the triangle inequality again shows that the sum describing the polynomial is always nonzero
past this radius—in fact, f(z) is always on the same side of the origin as zn. It follows directly that
the linear interpolator σ never vanishes.

3. For technical reasons that we will fix later, suppose that f(0) 6= 0 is nonvanishing at zero. Then for a
very small radius r � 1, we have that

∫
f◦Cr

dθ � 1 is a very small value. Then, we apply Stokes’s
theorem twice to our supposed 2–chains: the 2–chain σ1.1 from Problem 1.1 composes with f to give∫

f◦CR

dθ =

∫
f◦Cr

dθ +

∫
f◦σ1.1

d( dθ).

Importantly, this only works if f ◦ σ1.1 factors through R2 \ {0}. Then, we apply Stokes’s theorem to
the σ from the previous part:∫

f◦CR

dθ =

∫
nCR

dθ +

∫
σ

d dθ +

∫
f◦σ1.1

d( dθ).
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We previously calculated
∫
nCR

dθ = 2πn, and the other two integrals are taken of positive functions,
so the sum can only be larger. For n ≥ 1, this sum is not near to zero—a contradiction, indicating
that f ◦ σ1.1 does not factor through R2 \ {0}, which in turn entails the existence of some zero in the
range of f . (ECP)

4 For submission to Rohil Prasad

Problem 4.1. A function f : C→ C is said to be complex-differentiable when the limit

lim
h→0

f(z + h)− f(z)

h

exists. Note that this is considerably more complicated than being differentiable as a function R2 → R2, since
we aren’t taking the norm in the denominator, and so we are multiplying two complex numbers together,
which has funny effects. We shorthand “f is continuously complex-differentiable on an open set A ⊆ C” to
“f is holomorphic on A”.

1. Show that f(z) = z is holomorphic and that f(z) = z is not. Show that the sum, product, and inverse
(where nonzero) of holomorphic functions are holomorphic.

2. Write a holomorphic function f as f(x+ iy) = u(x+ iy) + iv(x+ iy) for two functions u, v : R2 → R.
Demonstrate the Cauchy-Riemann-equations:

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x
.

3. Let T : C→ C be a R-linear transformation where C is considered as a real vector space on the basis
{1, i}, yielding a matrix presentation

T =

(
a b
c d

)
.

Show that T is multiplication by a complex number if and only if a = d and b = −c. Compare this
with the previous part: a generic holomorphic function f : C → C has both complex derivative f ′(a)
at a point as well as a multivariate derivative Daf . How are these related?

4. Extend the standard operations on 1-forms to complex 1-forms ω + iη by the formulas

d(ω + iη) = dω + idη,

∫
c

(ω + iη) =

∫
c

ω + i

∫
c

η, dz = dx+ idy,

and
(ω + iη) ∧ (ψ + iϕ) = (ω ∧ ψ − η ∧ ϕ) + i(ω ∧ ϕ+ η ∧ ψ).

Show that d(fdz) = 0 if and only if f : C→ C satisfies the Cauchy-Riemann equations.

5. (Cauchy Integral Theorem:) If f is holomorphic on A and c is a closed curve with c = ∂σ for some
2-chain σ, then

∫
c
fdz = 0.

6. In the example f(z) = 1/z, show f · dz = idθ + dh for some auxiliary function h : C
{0} → R. Use Problem 1.2 to conclude ∫

CR

f · dz = 2πin.
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7. Let f be holomorphic on {z : |z| < 1}, and define g(z) = f(z)/z which is holomorphic on {z : 0 < |z| <
1}. For 0 < Rin < Rout < 1 as in Problem 1.1, conclude∫

Cin

f(z)

z
dz =

∫
Cout

f(z)

z
dz.

Finally, take the limit Rin → 0 and conclude the Cauchy Integral Formula:

f(0) =
1

2πi

∫
Cout

f(z)

z
dz.

This formula is super remarkable: note that the value of f at 0 is completely determined by its values
on the unit circle–all of which are very far away from 0!

Solution. 1. If f(z) = z, then

lim
h→0

(f(z + h)− f(z))/h = lim
h→0

(z + h− z)/h = 1.

Therefore, f(z) = z is holomorphic.
On the other hand, take f(z) = z.
Let t be a real parameter going to 0. Then limt→0(f(z+ t)−f(z))/t = limt→0(z+ t−z)/t = 1. However,

if we take the limit in the imaginary direction, we get limt→0(f(z+it)−f(z))/it = limt→0(z−it−z)/t = −1.
Since the limit is different in two directions, the limit does not exist on the complex plane and f(z) = z is
not holomorphic.

The fact that the sum of two holomorphic functions is holomorphic follows by the linearity of the complex
derivative as defined above.

Now take two holomorphic functions f, g. Then

lim
h→0

fg(z + h)− fg(z)

h
= lim
h→0

f(z + h)g(z + h)− f(z)g(z + h) + f(z)g(z + h)− f(z)g(z)

h

= lim
h→0

g(z + h)(f(z + h)− f(z)) + f(z)(g(z + h)− g(z))

h

= lim
h→0

g(z + h) · f(z + h)− f(z)

h
+ lim
h→0

f(z) · g(z + h)− g(z)

h

= g(z)f ′(z) + f(z)g′(z).

Therefore, fg is holomorphic as well.
The inverse is holomorphic by a similar calculation:

lim
h→0

1
f(z+h) −

1
f(z)

h
= lim
h→0

f(z)− f(z + h)

f(z)f(z + h)h

=
1

f(z)2
lim
h→0

f(z)− f(z + h)

h

= − f
′(z)

f(z)2
.

2. For a real parameter t going to 0, we have by definition

lim
t→0

f(z + t)− f(z)

t
=
∂u

∂x
+ i

∂v

∂x

and

lim
t→0

f(z + it)− f(z)

it
= −i∂u

∂y
+
∂v

∂y
.
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Since f is holomorphic, both of these limits coincide. Equating the real and imaginary parts, we get

∂u

∂x
=
∂v

∂y

and
∂u

∂y
= −∂v

∂x
.

3. Multiplication by a constant number x+ yi sends 1 to x+ yi and i to −y+xi. Therefore, the associated
matrix is (

x −y
y x

)
.

From this, we can conclude that T is multiplication by a complex number iff a = d and b = −c.
Furthermore, from our derivation we find that in this case T is multiplication by the complex number a− bi.

By the Cauchy-Riemann equations above, we find that the Jacobian Daf satisfies exactly this relation,
and so as a transformation is equivalent to multiplication by the complex number ∂u

∂x − i
∂u
∂y = ∂v

∂y − i
∂u
∂y . This

is exactly f ′(a) by our derivation above!
4. Write out f = u+ iv, dz = dx+ idy. Then, we get fdz = (udx− vdy) + i(vdx+ udy).

Taking the exterior derivative, we calculate

d(fdz) = (
∂u

∂y
dy ∧ dx− ∂v

∂x
dx ∧ dy) + i(

∂v

∂y
dy ∧ dx+

∂u

∂x
dx ∧ dy)

= [(−∂u
∂y
− ∂v

∂x
) + i(

∂u

∂x
− ∂v

∂y
)]dx ∧ dy.

Therefore, d(fdz) is equal to 0 iff the Cauchy-Riemann equations are satisfied.
5. We apply Stokes’ Theorem: ∫

c

fdz =

∫
σ

d(fdz) =

∫
σ

0 = 0.

6. We can write f(x + iy) = 1
x+iy = x−iy

x2+y2 . Therefore, f = u + iv where u(x + iy) = x
x2+y2 , v(x + iy) =

− y
x2+y2 .

By our formula for dθ, we get dθ = vdx+ udy. Therefore, it follows that fdz = idθ+ (udx− vdy), so we
must find some h such that dh = udx − vdy. This is equivalent to showing that there exists some function
h such that ∂h

∂x = u, ∂h
∂y = −v.

Luckily for us, we can construct this function explicitly as h(x+ iy) = 1
2 log(x2 + y2).

We can then evaluate ∫
CR

f · dz = i ·
∫
CR

dθ +

∫
CR

dh

.
By Problem 1.2, i ·

∫
CR

dθ = 2πi. On the other hand, by Stokes’ Theorem,
∫
CR

dh =
∫
∅ h = 0. Therefore,

we get ∫
CR

f · dz = 2πi.

7. As in Problem 1.1, let σ be a 2-chain with ∂σ = Cout − Cin.
Then by Stokes’ theorem and the fact that g is holomorphic,∫

Cout

g(z)dz −
∫
Cin

g(z)dz =

∫
σ

d(g(z)dz) = 0.

As we take Rin to 0, we have f(z) approaches f(0). Therefore,

lim
Rin→0

∫
Cin

f(z)

z
dz = lim

Rin→0

∫
Cin

f(0)

z
dz.
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By the previous part, the RHS is equal to 2πi · f(0). Then, by the equality we have already established
we conclude

f(0) =
1

2πi

∫
Cout

f(z)

z
dz. (RP)
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