Homework \#6

Math 25b
Due: April 12th, 2017

Guidelines:

- You must type up your solutions to this assignment in LATEX. There's a template available on the course website.
- This homework is divided into four parts. You will turn each part in to a separate CA's mailbox on the second floor of the science center. So, be sure to do the parts on separate pieces of paper.
- If your submission to any particular CA takes multiple pages, then staple them together. If you don't own one, a stapler is available in the Cabot Library in the Science Center.
- Be sure to put your name at the top of each part, so that we know who to score!
- If you collaborate with other students, please announce that somewhere (ideally: next to the problems you collaborated on) so that we don't get suspicious of hyper-similar answers.

Failure to meet these guidelines may result in loss of points. (Staple your pages!) ${ }^{1}$

1 For submission to Thayer Anderson

Problem 1.1. Akin to the tensor product of functionals described in class, you can also define a tensor product of vectors: $V \otimes W$ is the vector space populated by formal sums of elements of the form $v \otimes w$, subject to the relations

$$
\begin{array}{rlr}
\left(v_{1}+v_{2}\right) \otimes w & =v_{1} \otimes w+v_{2} \otimes w, & (k v) \otimes w=k(v \otimes w)=v \otimes(k w), \\
v \otimes\left(w_{1}+w_{2}\right) & =v \otimes w_{1}+v \otimes w_{2} . &
\end{array}
$$

(The tensor described in class is thus this definition of tensor, applied to the dual space \mathbb{R}^{*}.) Similarly, you can also build a wedge product of vectors $v_{1}, \ldots, v_{k} \in V$ as a particular kind of tensor:

$$
v_{1} \wedge \cdots \wedge v_{k}=\frac{1}{k!} \sum_{\sigma \text { a permutation of }\{1, \ldots, k\}} \operatorname{sign}(\sigma) \cdot\left(v_{\sigma 1} \otimes \cdots \otimes v_{\sigma k}\right),
$$

considered as a vector in $\left(\mathbb{R}^{n}\right)^{\otimes k}$. (Again, the wedge product defined in class is thus this definition of wedge product, applied to the dual space \mathbb{R}^{*}.)

1. Show that a linear map $V \otimes W \rightarrow U$ is identical information to a bilinear function $V \times W \rightarrow U$.
2. Let e_{1}, \ldots, e_{n} be the standard basis for \mathbb{R}^{n}, and let $\varphi_{1}, \ldots, \varphi_{n}$ be the dual basis under the standard inner product. Demonstrate the identity

$$
\left(\varphi_{j_{1}} \wedge \cdots \wedge \varphi_{j_{k}}\right)\left(e_{j_{1}} \wedge \cdots \wedge e_{j_{k}}\right)=1
$$

by considering the input as a vector in $\left(\mathbb{R}^{n}\right)^{\otimes k}$ and the function as a vector in $\left(\left(\mathbb{R}^{n}\right)^{*}\right)^{\otimes k}=\left(\left(\mathbb{R}^{n}\right)^{\otimes k}\right)^{*}$.

[^0]3. Remark on the role of the binomial/factorial coefficient in the definition of the wedge product. If that factor were omitted, what would the above pairing evaluate to instead? Why?
4. Note that if $\left\{v_{1}, \ldots, v_{k}\right\}$ and $\left\{w_{1}, \ldots, w_{\ell}\right\}$ are basis of V and W respectively, then $\left\{v_{i} \otimes w_{j}\right\}$ forms a basis of $V \otimes W$. Conclude more generally that if v_{1}, \ldots, v_{k} is a k-tuple of vectors in \mathbb{R}^{n} and $\psi_{1}, \ldots, \psi_{k}$ is a k-tuple of linear functionals on \mathbb{R}^{n}, then the following two values agree:
$$
\left(\psi_{1} \wedge \cdots \wedge \psi_{k}\right)\left(v_{1}, \ldots, v_{k}\right)=\left(\psi_{1} \wedge \cdots \wedge \psi_{k}\right)\left(v_{1} \wedge \cdots \wedge v_{k}\right)
$$

Problem 1.2. For $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, demonstrate the Leibniz rule

$$
d(f \cdot g)=d f \cdot g+f \cdot d g
$$

2 For submission to Davis Lazowski

Problem 2.1. Recall the definition of the cross-product in \mathbb{R}^{3} : for $v, w \in \mathbb{R}^{3}, v \times w$ is the vector representing the linear functional

$$
\varphi(u)=\operatorname{det}(u|v| w)
$$

under the standard inner product-i.e., $\varphi(u)=\langle u, v \times w\rangle$. Demonstrate the following truckload of identities:
1.

$$
\begin{array}{lll}
e_{1} \times e_{1}=0, & e_{1} \times e_{2}=e_{3}, & e_{1} \times e_{3}=-e_{2} \\
e_{2} \times e_{1}=-e_{3}, & e_{2} \times e_{2}=0, & e_{2} \times e_{3}=e_{1} \\
e_{3} \times e_{1}=e_{2}, & e_{3} \times e_{2}=-e_{1}, & e_{3} \times e_{3}=0
\end{array}
$$

2. $v \times w=\left(v_{2} w_{2}-v_{3} w_{2}\right) e_{1}+\left(v_{3} w_{1}-v_{1} w_{3}\right) e_{2}+\left(v_{1} w_{2}-v_{2} w_{1}\right) e_{3}$.
3. $\|v \times w\|=\|v\| \cdot\|w\| \cdot \sin \theta$, where θ is the angle formed by v and w as rays intersecting at the origin. Conclude $\langle v \times w, v\rangle=0$ and $\langle v \times w, w\rangle=0$.
4. The juggling identities: $\langle v, w \times u\rangle=\langle w, u \times v\rangle=\langle u, v \times w\rangle$.
5. The associative identities: $v \times(w \times u)=\langle v, u\rangle w-\langle v, w\rangle u$ and $(v \times w) \times u)=\langle v, u\rangle w-\langle w, u\rangle v$.
6. $\|v \times w\|=\sqrt{\|v\|^{2} \cdot\|w\|^{2}-\langle v, w\rangle^{2}}$.

Problem 2.2. Recall the polar coordinate transformation $x(r, \theta)=r \cos \theta$ and $y(r, \theta)=r \sin \theta$, defined for $0<\theta<2 \pi$ and $r>0$. Prove that where θ is defined as a function of x and y, we have

$$
d \theta=\frac{-y}{x^{2}+y^{2}} \mathrm{~d} x+\frac{x}{x^{2}+y^{2}} \mathrm{~d} y
$$

3 For submission to Handong Park

Problem 3.1. For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we define a vector field ∇f by the formula

$$
\nabla f:\left(a \in \mathbb{R}^{n}\right) \mapsto\left(\begin{array}{c}
\left.\frac{\partial f}{\partial x_{1}}\right|_{x=a} \\
\vdots \\
\left.\frac{\partial f}{\partial x_{n}}\right|_{x=a}
\end{array}\right) \in T_{a} \mathbb{R}^{n}
$$

Recall also the directional derivative from Homework $\# 3$: given a tangent vector $v \in T_{a} \mathbb{R}^{n}$, we set

$$
\mathbb{D}_{a}^{v} f=\lim _{t \rightarrow 0} \frac{f(a+t v)-f(a)}{t} .
$$

Conclude $\mathbb{D}_{a}^{v}(f)=\langle v, \nabla f(a)\rangle$, and hence that $\nabla f(a)$ is the direction of greatest ascent ${ }^{2}$.

[^1]Problem 3.2. Let $f: U \rightarrow \mathbb{R}^{n}$ be a differentiable function with a differentiable inverse $f^{-1}: f(U) \rightarrow \mathbb{R}^{n}$. If every closed form on U is exact, show that the same is true for $f(U)$.

4 For submission to Rohil Prasad

Problem 4.1. Let $c:[0,1] \rightarrow\left(\mathbb{R}^{n}\right)^{n}$ be a 1 -parameter continuous family of families of n vectors in \mathbb{R}^{n}, and suppose that $c(t)=\left\{c_{1}(t), \ldots, c_{n}(t)\right\}$ is a basis of \mathbb{R}^{n} for each $0 \leq t \leq 1$. Show that the orientation of each basis must be the same, i.e., the value

$$
\left[c_{1}(t), \ldots, c_{n}(t)\right]:=\operatorname{sign}\left(\operatorname{det}\left(c_{1}(t)|\ldots| c_{n}(t)\right)\right)
$$

is constant even as t varies.
Problem 4.2. In class, we "proved" by example that any quadratic form $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be written in the form

$$
Q=a_{1}^{2}+\cdots+a_{k}^{2}-b_{1}^{2}-\cdots-b_{\ell}^{2}
$$

for a family of linearly independent linear functionals a_{*} and b_{*}. Complete our discussion by turning our examples into an honest proof. (Don't worry about the invariance of the signature; just work on this existence half.)

[^0]: ${ }^{1}$ This version of the homework dates from April 11, 2017.

[^1]: ${ }^{2} \mathrm{Or}$ "direction of fastest change", if you prefer.

