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Problem 1.1. Akin to the tensor product of functionals described in class, you can also define a tensor
product of vectors: V ® W is the vector space populated by formal sums of elements of the form v ® w,
subject to the relations

(V1 +v2) @W =1 @ W+ v2 ® W, (kv) @ w =Ek(v®@w) =v® (kw),
v® (w1 +w2) =v @ w1 +v & wa.

(The tensor described in class is thus this definition of tensor, applied to the dual space R*.) Similarly, you

can also build a wedge product of vectors vy,...,v, € V as a particular kind of tensor:
1 .
Ul/\.../\vkzH Z sign(o) - (Vo1 ® - -+ ® Vi),
o a permutation of {1,..., k}

considered as a vector in (R™)®*. (Again, the wedge product defined in class is thus this definition of wedge
product, applied to the dual space R*.)

1. Show that a linear map V ® W — U is identical information to a bilinear function V- x W — U.

2. Let eq,...,e, be the standard basis for R", and let ¢1,..., v, be the dual basis under the standard
inner product. Demonstrate the identity

(Spjl /\"'/\wjk)(ejl /\"'/\ejk) =1
by considering the input as a vector in (R")®* and the function as a vector in ((R")*)®* = ((R")®*)*.

3. Remark on the role of the binomial/factorial coefficient in the definition of the wedge product. If that
factor were omitted, what would the above pairing evaluate to instead? Why?

4. Note that if {v1,...,vx} and {ws,...,w,} are basis of V and W respectively, then {v; ® w;} forms a
basis of V @ W. Conclude more generally that if vy, ..., v is a k—tuple of vectors in R™ and 91, ..., ¥y
is a k—tuple of linear functionals on R", then the following two values agree:

(1 A AE) (V1o 0R) = (1 A A (01 A=+ A vg).

Solution. 1. Given a linear map g: VW — U, define a function f: V xW — U by f(u,w) = g(u®w).
In the other direction, a function g: V x W — U defines a linear function from the space of all symbols
v @ w without any relations imposed to U, and then this function descends to a linear functon on
the quotient space V' ® W because the bilinearity of g causes it to vanish on the subspace of symbols
generated by the relations specified above.



2. This is a rather manual computation.
k! . 1 .
(i Ao Ng (e A Neg) = (45 > " sign(n)(gn1 @+ @ o) o > sign(0)(vo1 @ -+ ® o)
n o
1
=7 Z(sﬁnl ® @ pnk) (Vo1 ® *++ ® Vok)-
0-377

This sum is nonzero if and only if ¢ = 7, in which case is gives %, and this happens k! many times.
3. The fraction is there to handle this double-counting appearing from the double summation.

4. Each vector v; and each functional ¢; decomposes as a sum of standard basis vectors, and then the
above results apply. (ECP)

Problem 1.2. For f,g: R® — R, demonstrate the Leibniz rule

d(f-g)=df -g+f-dg.

Solution. This is a totally formal consequence of the Leibniz rule for the full derivative of functions R” — R,
solved way back in Problem 2.1.1.2. Recall D,(f-g) = g-Dof + f - Dag. By reading the coordinate functions
of the 1-form d(f - g) out of D(f - g), we have

J

U0 =300 e =3 (P g+ 1 gL ) doy = af g4 g s (CP)
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Problem 2.1. Recall the definition of the cross-product in R3: for v,w € R3, v x w is the vector representing
the linear functional
u>—>det(u‘v‘w)

under the standard inner product. Demonstrate the following truckload of identities:

1.
61X€1=0, e X eg = e3, €1 X ez = —eq,
€9 X €1 = —eg, €2X€2:0, €y X e3 = €1,
ez X e] = eq, ez X eg = —eq, es X ez = 0.

2. v X w = (vawg — v3wa)ey + (vswy — viws)es + (Viwe — Vown )es.

3. |lv x w|| = |jv]| - |w]| - sin 6, where 6 is the angle formed by v and w as rays intersecting at the origin.
Conclude (v x w,v) =0 and (v X w,w) = 0.

4. The juggling identities: (v, w X u) = (w,u X v) = (u,v X W).
5. The associative identities: v X (w X u) = (v, u)w — (v, w)u and (v X w) X u) = (v, v)w — (W, w)v.

6. [lv x wll = V/[lo[? - w]? = (v, w)?.

Solution. 1 will note two lemmas which make all the identities easy.
First, the cross product is linear in both elements. This is clear since u — det (u | v | w) is a linear
functional.



Second, the cross product is rotation invariant, in the sense that if R is a rotation, then R(v x W) =
(Rv) x (Rw).

As a proof, if v and w are not linearly independent, then Rv and Rw aren’t either, so v x w = 0 and
Rv x Rw =0 = R0, so this is trivial.

Otherwise, v, w and v X w are linearly independent. (To prove this, observe that (v xw, v xw) is nonzero.)
Therefore, Rv, Rw and R(v X w) are linearly independent. So we know that Rv x Rw o« R(v X w). So we
just need to fix the proportionality constant, and show that it’s one.

But since R is a rotation matrix,

det (Rlvxw) | Rv | Rw)=det(vxw | v | w)

this constant is just one.
Let’s use these to prove all the identities.

1. Clearly e; x e; = 0, since the matrix (u €; ej) has less than full rank, so has zero determinant.
Now suppose we have k # i # j # k. Then since (u | e | ej) is only nonzero when u has a ég
component, so we know that e; x e; = ay;ex; we just need to fix ay;.

For k = 1,i = 2,5 = 3, by inputting u = ey, since the determinant is just the identity, we know that
1= 0123<€1,€1> = (¥23. So €y X €3 = €7.

Also observe that det (u | e | ej) swaps sign under transposition of rows, since a row transposi-
tion matrix has determinant -1.

Therefore «;; = sign(o), where o is the permutation sending (k,1,j) to (1,2,3). This demonstrates
the remaining identities.

2. By linearity in both elements, we only need to calculate v; x w;. By the previous part, this is a;;v;w;ex.
Summing all these individual parts, we get the required identity.

3. . Since rotation doesn’t change absolute value, we might as well rotate so that v and w are on the
same plane— i.e. Rv = vier, and Rw = wye; + waes.

Then
Rv x Rw = vywqes

So that

|Jv x w]|
[[v]|[|w]]
B [|Rv x Ruwl|
|| Rol[[| Rw|
__ |offuws
[u1|v/w? + w3
|ws|

=sinf

as desired.
4. This is equivalent to the statement that
det(v | w | wy=det(w | u | v)=det(u | v | w)

Which is true because each matrix is related by two row transpositions, and the determinant of the
matrix which performs two row transpositions is 1 (since it is the product of two transposition matrices
of determinant —1.)



5. First, observe that (with i, j, k not necessarily distinct)
e; X (e X er) = (e;,exye; — (e, e;)ex
directly by computing the cross product.
Now
e; X (ej x u) =e; X (ej X (ure; + uges + uzes))
=e; X [u1(ej X e1) + ua(ej X e2) +uz(e; X eg)]

3
= Zukei X (e; % ey)

k=1

3
=D (ei uner)e; — {ei, ej) (uxer)
=1
= <ei7 U>€j - <6i7 ej>u
Now use linearity the exact same way to replace e; and e; with v and w. Prove the second associative
identity the exact same way.

6. Again, rotate so that Rv = vie;. and Rw = wye; + waes. Then we want to show

[|Rv x Rw|| = |viws]
VoR(w? +w3) — (wrwn)? = foyw|
which is true. Then since ||Rv|| = v, (Rv, Rw) = (v, w), done. (DL)

Problem 2.2. Recall the polar coordinate transformation z(r, ) = rcosf and y(r,8) = rsin 6, defined for
0 < 0 <27 and r > 0. Prove that where 6 is defined as a function of x and y, we have

—y T
do = d dy.
P T

Solution. Recall that we have a lemma saying

Let u be the map (z,y) — (0,7), i.e. (z,y) — (arctan £, /22 + y2).
Then this lemma applied to dz says

df = %[arctan(y/x)]dm + gy[arctan(y/x)]dy

Computing the derivatives, we have the requisite

y x
df = — d
z? 4 y? m+x2+y2

dy (DL)
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Problem 3.1. For f: R™ — R, we define a vector field V f by the formula
of

01 | g
Vi:(aeR")— : e T,R"™.

of
Oxy

r=a



Recall also the directional derivative from Homework #3: given a tangent vector v € T,R", we set

0 — iy F0 1)~ F0)

t—0 4
Conclude D¥(f) = (v, Vf(a)), and hence that V f(a) is the direction of greatest ascent!.
Solution. Our conclusion from Homework #3 was DY f = (D, f)(v). We know that D, f admits expression
as a matrix:
d 0
D-( 8 - 8.

and hence we have the evaluation formula

D)) = (- )| | = V)

By writing this as an inner product, we can appeal to Cauchy—Schwarz to see that the expression (v, V f(a))
is maximized over unit-length tangent vectors v by v = (Vf(a))/||Vf(a)]. (ECP)

Problem 3.2. Let f: U — R" be a differentiable function with a differentiable inverse f=': f(U) — R™.
If every closed form on U is exact, show that the same is true for f(U).

Solution. Let w be a closed form defined on f(U). Then (f~!)*w is a form on U, and because exterior
differentiation commutes with pullback we have

shows that (f~!)*w is closed as well. Since on U every closed form is exact, there exists some & with
d¢é = (f~1)*w. We claim that f*¢ witnesses w as an exact form:

df*¢=fds=f(fVw=("ofllw=idw=uw. (ECP)
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Problem 4.1. Let ¢: [0,1] — (R™)™ be a 1-parameter continuous family of families of n vectors in R™, and
suppose that ¢(t) = {c1(t),...,cn(t)} is a basis of R™ for each 0 < ¢ < 1. Show that the orientation of each
basis must be the same, i.e. the value

[e1(t),...,cn(t)] = sign(det(ci(t)] ... |en(t)))
is constant even as t varies.

Solution. Postcompose ¢ with the determinant map to get a continuous map ¢ : [0,1] — R.

Since ¢(t) is a basis of R™ for every t, this determinant must be nonzero for every t.

Now assume for the sake of contradiction that the orientation switches. This implies that there exists
s,t € [0,1] such that one of ¢(s), p(t) is less than 0 and one is greater than 0.

Applying the intermediate value theorem to ¢, this tells us that there is some a € [s, t] such that ¢(a) = 0.
However, we assumed in the problem statement that ¢ is nonzero everywhere, so we arrive at a contradiction
and the orientation remains constant. (RP)

10r “direction of fastest change”, if you prefer.



Problem 4.2. In class, we “proved” by example that any quadratic form @ : R™ — R can be written in the
form
Q=al+ - +al—b]—...b

for a family of linearly independent linear functionals a, and b,. Complete our discussion by turning our
examples into an honest proof. (Don’t worry about the invariance of the signature; just work on this existence
half.)

Solution. We can do this by induction on n.

For n = 1, Q(z) is simply equal to Cz? for some constant C'.

Now take a quadratic form Q(z1, ..., x,). We can write it as Cz2 +x,,-A(z1,. .., 2n_1)+B(z1, ..., Tn_1)-
Here C' is a constant, A is a linear functional, and B is a quadratic form.

Then we can set u to be the linear functional vCz,, + Az, ..., xn,l)/Q\FC.

It follows that we can write Q = u?+B(z1,...,Tp_1)— iA(xl, oy Tp_1)? The term B(z1,...,20,_1)—
iA(ml, ...,Tn_1)% is a quadratic form in n — 1 variables, so we can apply our induction hypothesis and
obtain the desired formula for Q. (RP)



