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1 For submission to Thayer Anderson

Problem 1.1. Akin to the tensor product of functionals described in class, you can also define a tensor
product of vectors: V ⊗W is the vector space populated by formal sums of elements of the form v ⊗ w,
subject to the relations

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, (kv)⊗ w = k(v ⊗ w) = v ⊗ (kw),

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.

(The tensor described in class is thus this definition of tensor, applied to the dual space R∗.) Similarly, you
can also build a wedge product of vectors v1, . . . , vk ∈ V as a particular kind of tensor:

v1 ∧ · · · ∧ vk =
1

k!

∑
σ a permutation of {1, . . . , k}

sign(σ) · (vσ1 ⊗ · · · ⊗ vσk),

considered as a vector in (Rn)⊗k. (Again, the wedge product defined in class is thus this definition of wedge
product, applied to the dual space R∗.)

1. Show that a linear map V ⊗W → U is identical information to a bilinear function V ×W → U .

2. Let e1, . . . , en be the standard basis for Rn, and let ϕ1, . . . , ϕn be the dual basis under the standard
inner product. Demonstrate the identity

(ϕj1 ∧ · · · ∧ ϕjk)(ej1 ∧ · · · ∧ ejk) = 1

by considering the input as a vector in (Rn)⊗k and the function as a vector in ((Rn)∗)⊗k = ((Rn)⊗k)∗.

3. Remark on the role of the binomial/factorial coefficient in the definition of the wedge product. If that
factor were omitted, what would the above pairing evaluate to instead? Why?

4. Note that if {v1, . . . , vk} and {w1, . . . , w`} are basis of V and W respectively, then {vi ⊗ wj} forms a
basis of V ⊗W . Conclude more generally that if v1, . . . , vk is a k–tuple of vectors in Rn and ψ1, . . . , ψk
is a k–tuple of linear functionals on Rn, then the following two values agree:

(ψ1 ∧ · · · ∧ ψk)(v1, . . . , vk) = (ψ1 ∧ · · · ∧ ψk)(v1 ∧ · · · ∧ vk).

Solution. 1. Given a linear map g : V ⊗W → U , define a function f : V ×W → U by f(u,w) = g(u⊗w).
In the other direction, a function g : V ×W → U defines a linear function from the space of all symbols
v ⊗ w without any relations imposed to U , and then this function descends to a linear functon on
the quotient space V ⊗W because the bilinearity of g causes it to vanish on the subspace of symbols
generated by the relations specified above.
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2. This is a rather manual computation.

(ϕj1 ∧ · · · ∧ ϕjk)(ej1 ∧ · · · ∧ ejk) =

(
k!

k!

∑
η

sign(η)(ϕη1 ⊗ · · · ⊗ ϕηk)

)(
1

k!

∑
σ

sign(σ)(vσ1 ⊗ · · · ⊗ vσk)

)

=
1

k!

∑
σ,η

(ϕη1 ⊗ · · · ⊗ ϕηk)(vσ1 ⊗ · · · ⊗ vσk).

This sum is nonzero if and only if σ = η, in which case is gives 1
k! , and this happens k! many times.

3. The fraction is there to handle this double-counting appearing from the double summation.

4. Each vector vj and each functional ϕj decomposes as a sum of standard basis vectors, and then the
above results apply. (ECP)

Problem 1.2. For f, g : Rn → R, demonstrate the Leibniz rule

d(f · g) = df · g + f · dg.

Solution. This is a totally formal consequence of the Leibniz rule for the full derivative of functions Rn → R,
solved way back in Problem 2.1.1.2. Recall Da(f ·g) = g ·Daf+f ·Dag. By reading the coordinate functions
of the 1–form d(f · g) out of D(f · g), we have

d(f · g) =
∑
j

[D(f · g)]j dxj =
∑
j

(
∂f

∂xj
· g + f · ∂g

∂xj

)
dxj = df · g + f · dg. (ECP)

2 For submission to Davis Lazowski

Problem 2.1. Recall the definition of the cross-product in R3: for v, w ∈ R3, v×w is the vector representing
the linear functional

u 7→ det
(
u v w

)
under the standard inner product. Demonstrate the following truckload of identities:

1.

e1 × e1 = 0, e1 × e2 = e3, e1 × e3 = −e2,
e2 × e1 = −e3, e2 × e2 = 0, e2 × e3 = e1,

e3 × e1 = e2, e3 × e2 = −e1, e3 × e3 = 0.

2. v × w = (v2w2 − v3w2)e1 + (v3w1 − v1w3)e2 + (v1w2 − v2w1)e3.

3. ‖v × w‖ = ‖v‖ · ‖w‖ · sin θ, where θ is the angle formed by v and w as rays intersecting at the origin.
Conclude 〈v × w, v〉 = 0 and 〈v × w,w〉 = 0.

4. The juggling identities: 〈v, w × u〉 = 〈w, u× v〉 = 〈u, v × w〉.

5. The associative identities: v × (w × u) = 〈v, u〉w − 〈v, w〉u and (v × w)× u) = 〈v, u〉w − 〈w, u〉v.

6. ‖v × w‖ =
√
‖v‖2 · ‖w‖2 − 〈v, w〉2.

Solution. I will note two lemmas which make all the identities easy.
First, the cross product is linear in both elements. This is clear since u→ det

(
u | v | w

)
is a linear

functional.
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Second, the cross product is rotation invariant, in the sense that if R is a rotation, then R(v ×W ) =
(Rv)× (Rw).

As a proof, if v and w are not linearly independent, then Rv and Rw aren’t either, so v × w = 0 and
Rv ×Rw = 0 = R0, so this is trivial.

Otherwise, v, w and v×w are linearly independent. (To prove this, observe that 〈v×w, v×w〉 is nonzero.)
Therefore, Rv,Rw and R(v × w) are linearly independent. So we know that Rv × Rw ∝ R(v × w). So we
just need to fix the proportionality constant, and show that it’s one.

But since R is a rotation matrix,

det
(
R(v × w) | Rv | Rw

)
= det

(
v × w | v | w

)
this constant is just one.

Let’s use these to prove all the identities.

1. Clearly ej × ej = 0, since the matrix
(
u ej ej

)
has less than full rank, so has zero determinant.

Now suppose we have k 6= i 6= j 6= k. Then since
(
u | ei | ej

)
is only nonzero when u has a êk

component, so we know that ei × ej = αijek; we just need to fix αij .

For k = 1, i = 2, j = 3, by inputting u = e1, since the determinant is just the identity, we know that
1 = α23〈e1, e1〉 = α23. So e2 × e3 = e1.

Also observe that det
(
u | ei | ej

)
swaps sign under transposition of rows, since a row transposi-

tion matrix has determinant -1.

Therefore αij = sign(σ), where σ is the permutation sending (k, i, j) to (1, 2, 3). This demonstrates
the remaining identities.

2. By linearity in both elements, we only need to calculate vi×wj . By the previous part, this is αijviwjek.
Summing all these individual parts, we get the required identity.

3. . Since rotation doesn’t change absolute value, we might as well rotate so that v and w are on the
same plane– i.e. Rv = v1e1, and Rw = w1e1 + w2e2.

Then
Rv ×Rw = v1w2e3

So that

||v × w||
||v||||w||

=
||Rv ×Rw||
||Rv||||Rw||

=
|v1||w2|

|v1|
√
w2

1 + w2
2|

=
|w2|√
w2

1 + w2
2

= sin θ

as desired.

4. This is equivalent to the statement that

det
(
v | w | u

)
= det

(
w | u | v

)
= det

(
u | v | w

)
Which is true because each matrix is related by two row transpositions, and the determinant of the
matrix which performs two row transpositions is 1 (since it is the product of two transposition matrices
of determinant −1.)
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5. First, observe that (with i, j, k not necessarily distinct)

ei × (ej × ek) = 〈ei, ek〉ej − 〈ei, ej〉ek
directly by computing the cross product.

Now

ei × (ej × u) = ei × (ej × (u1e1 + u2e2 + u3e3))

= ei × [u1(ej × e1) + u2(ej × e2) + u3(ej × e3)]

=

3∑
k=1

ukei × (ej × ek)

=

3∑
k=1

〈ei, ukek〉ej − 〈ei, ej〉(ukek)

= 〈ei, u〉ej − 〈ei, ej〉u

Now use linearity the exact same way to replace ei and ej with v and w. Prove the second associative
identity the exact same way.

6. Again, rotate so that Rv = v1e1. and Rw = w1e1 + w2e2. Then we want to show

||Rv ×Rw|| = |v1w2|√
v21(w2

1 + w2
2)− (v1w1)2 = |v1w2|

which is true. Then since ||Rv|| = v, 〈Rv,Rw〉 = 〈v, w〉, done. (DL)

Problem 2.2. Recall the polar coordinate transformation x(r, θ) = r cos θ and y(r, θ) = r sin θ, defined for
0 < θ < 2π and r > 0. Prove that where θ is defined as a function of x and y, we have

dθ =
−y

x2 + y2
dx+

x

x2 + y2
dy.

Solution. Recall that we have a lemma saying

u∗(dxi) =

m∑
j=1

∂ui
∂xj

dxj

Let u be the map (x, y)→ (θ, r), i.e. (x, y)→ (arctan y
x ,
√
x2 + y2).

Then this lemma applied to dx says

dθ =
∂

∂x
[arctan(y/x)]dx+

∂

∂y
[arctan(y/x)]dy

Computing the derivatives, we have the requisite

dθ = − y

x2 + y2
dx+

x

x2 + y2
dy (DL)

3 For submission to Handong Park

Problem 3.1. For f : Rn → R, we define a vector field ∇f by the formula

∇f : (a ∈ Rn) 7→


∂f
∂x1

∣∣∣
x=a

...
∂f
∂xn

∣∣∣
x=a

 ∈ TaRn.
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Recall also the directional derivative from Homework #3: given a tangent vector v ∈ TaRn, we set

Dvaf = lim
t→0

f(a+ tv)− f(a)

t
.

Conclude Dva(f) = 〈v,∇f(a)〉, and hence that ∇f(a) is the direction of greatest ascent1.

Solution. Our conclusion from Homework #3 was Dvaf = (Daf)(v). We know that Daf admits expression
as a matrix:

Daf =
(

∂f
∂x1

· · · ∂f
∂xn

)
,

and hence we have the evaluation formula

(Daf)(v) =
(

∂f
∂x1

· · · ∂f
∂xn

)
·

 v1
...
vn

 = 〈v,∇f(a)〉.

By writing this as an inner product, we can appeal to Cauchy–Schwarz to see that the expression 〈v,∇f(a)〉
is maximized over unit-length tangent vectors v by v = (∇f(a))/‖∇f(a)‖. (ECP)

Problem 3.2. Let f : U → Rn be a differentiable function with a differentiable inverse f−1 : f(U) → Rn.
If every closed form on U is exact, show that the same is true for f(U).

Solution. Let ω be a closed form defined on f(U). Then (f−1)∗ω is a form on U , and because exterior
differentiation commutes with pullback we have

d((f−1)∗ω) = (f−1)∗dω = (f−1)∗0 = 0

shows that (f−1)∗ω is closed as well. Since on U every closed form is exact, there exists some ξ with
dξ = (f−1)∗ω. We claim that f∗ξ witnesses ω as an exact form:

df∗ξ = f∗dξ = f∗(f−1)∗ω = (f−1 ◦ f)∗ω = id∗ ω = ω. (ECP)

4 For submission to Rohil Prasad

Problem 4.1. Let c : [0, 1]→ (Rn)n be a 1-parameter continuous family of families of n vectors in Rn, and
suppose that c(t) = {c1(t), . . . , cn(t)} is a basis of Rn for each 0 ≤ t ≤ 1. Show that the orientation of each
basis must be the same, i.e. the value

[c1(t), . . . , cn(t)] = sign(det(c1(t)| . . . |cn(t)))

is constant even as t varies.

Solution. Postcompose c with the determinant map to get a continuous map ϕ : [0, 1]→ R.
Since c(t) is a basis of Rn for every t, this determinant must be nonzero for every t.
Now assume for the sake of contradiction that the orientation switches. This implies that there exists

s, t ∈ [0, 1] such that one of ϕ(s), ϕ(t) is less than 0 and one is greater than 0.
Applying the intermediate value theorem to ϕ, this tells us that there is some a ∈ [s, t] such that ϕ(a) = 0.

However, we assumed in the problem statement that ϕ is nonzero everywhere, so we arrive at a contradiction
and the orientation remains constant. (RP)

1Or “direction of fastest change”, if you prefer.
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Problem 4.2. In class, we “proved” by example that any quadratic form Q : Rn → R can be written in the
form

Q = a21 + · · ·+ a2k − b21 − . . . b2l
for a family of linearly independent linear functionals a∗ and b∗. Complete our discussion by turning our
examples into an honest proof. (Don’t worry about the invariance of the signature; just work on this existence
half.)

Solution. We can do this by induction on n.
For n = 1, Q(x) is simply equal to Cx2 for some constant C.
Now take a quadratic form Q(x1, . . . , xn). We can write it as Cx2n+xn ·A(x1, . . . , xn−1)+B(x1, . . . , xn−1).

Here C is a constant, A is a linear functional, and B is a quadratic form.
Then we can set u to be the linear functional

√
Cxn +A(x1, . . . , xn−1)/2

√
C.

It follows that we can write Q = u2+B(x1, . . . , xn−1)− 1
4CA(x1, . . . , xn−1)2. The term B(x1, . . . , xn−1)−

1
4CA(x1, . . . , xn−1)2 is a quadratic form in n − 1 variables, so we can apply our induction hypothesis and
obtain the desired formula for Q. (RP)
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