Homework \#4

Math 25b
Due: March 8th, 2017

Guidelines:

- You must type up your solutions to this assignment in $\mathrm{A}_{\mathrm{A}} \mathrm{EX}$. There's a template available on the course website.
- This homework is divided into four parts. You will turn each part in to a separate CA's mailbox on the second floor of the science center. So, be sure to do the parts on separate pieces of paper.
- If your submission to any particular CA takes multiple pages, then staple them together. If you don't own one, a stapler is available in the Cabot Library in the Science Center.
- Be sure to put your name at the top of each part, so that we know who to score!
- If you collaborate with other students, please announce that somewhere (ideally: next to the problems you collaborated on) so that we don't get suspicious of hyper-similar answers.

Failure to meet these guidelines may result in loss of points. (Staple your pages!) ${ }^{1}$

$$
\text { Throughout, } A \subseteq \mathbb{R}^{n} \text { will be a compact rectangle. }{ }^{2}
$$

1 For submission to Thayer Anderson

Problem 1.1. This problem shows that it is possible, if tedious, to perform integration of simple functions straight from the definitions. Define $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}1 & \text { if } x+y \leq 1, \\ 0 & \text { otherwise }\end{cases}
$$

Without invoking Fubini's theorem, show that f is integrable and that $\int_{A} f=1 / 2$.
Problem 1.2. 1. Let $f, g: A \rightarrow \mathbb{R}$ be integrable functions which satisfy $f \leq g$. Show that this transfers to their integrals: $\int_{A} f \leq \int_{A} g$.
2. Let $f: A \rightarrow \mathbb{R}$ be integrable. Show that $|f|$ is also integrable, and conclude $\left|\int_{A} f\right| \leq \int_{A}|f|$.

Problem 1.3. If $f: A \rightarrow \mathbb{R}$ is nonnegative and integrable with $\int_{A} f=0$, show that any any $\varepsilon>0$ the set $\{x \in A \mid f(x)>\varepsilon\}$ has measure zero.

[^0]
2 For submission to Davis Lazowski

Problem 2.1. If $C \subseteq A$ is a bounded set of measure zero and with integrable characteristic function χ_{C}, show that the integral $\int_{A} \chi_{C}$ is necessarily zero.

Problem 2.2. 1. Show that the collection of all rectangles $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ with all a_{j} and b_{j} rational (and n fixed) can be arranged into a sequence.
2. Conclude that if \mathcal{O} is an open cover of any set $A \subseteq \mathbb{R}^{n}$, then there is a sequence of opens $U_{1}, U_{2}, \ldots \in \mathcal{O}$ chosen from the cover such that $\left\{U_{1}, U_{2}, \ldots\right\}$ forms a cover of $A .^{3}$ (Hint: show that any $U \in \mathcal{O}$ has a rational rectangle in it.)

Problem 2.3. 1. Show that an unbounded set C cannot have content zero.
2. Use this observation to give an example of a closed set of measure zero that is not of content zero.
3. If C is a set of content zero, show that its boundary ∂C has content zero.
4. Exhibit an example of a bounded set C of measure zero such that ∂C does not have content zero.

3 For submission to Handong Park

Problem 3.1. Let $f: A \rightarrow \mathbb{R}$ be integrable, and suppose that $g: A \rightarrow \mathbb{R}$ agrees with f except at finitely many points. Show that g is also integrable (with the same integral).

Problem 3.2. Let $f, g: A \rightarrow \mathbb{R}$ both be integrable functions.

1. For any partition P of A and for any subrectangle S of P, show

$$
m_{S}(f)+m_{S}(g) \leq m_{S}(f+g), \quad M_{S}(f+g) \leq M_{S}(f)+M_{S}(g)
$$

2. Conclude that $f+g$ is integrable and that $\int_{A}(f+g)=\int_{A} f+\int_{A} g$.
3. For any constant $c \in \mathbb{R}$, show $\int_{A} c f=c \int_{A} f$.

Problem 3.3. Show that if $f, g: A \rightarrow \mathbb{R}$ are integrable, then so is their product $f \cdot g$.

4 For submission to Rohil Prasad

Problem 4.1. Show that an increasing function $f:[a, b] \rightarrow \mathbb{R}$ is integrable. (Hint: consider how just how little such a function can fail to be continuous.)

Problem 4.2. If A is a Jordan-measurable set and $\varepsilon>0$, show that there is a compact Jordan-measureable set $C \subseteq A$ such that $\int_{A \backslash C} 1<\varepsilon$.

Problem 4.3. Let $A \subseteq \mathbb{R}^{n}$ be a closed rectangle. Show that a subset $C \subseteq A$ is Jordan-measurable if and only if for every $\varepsilon>0$ there exists a partition P of A satisfying

$$
\sum_{S \text { of type I }} \operatorname{vol}(S)-\sum_{S \text { of type II }} \operatorname{vol}(S)<\varepsilon
$$

where "type I" are those rectangles intersecting C and "type II" are those rectangles contained in C.

[^1]
[^0]: ${ }^{1}$ This version of the homework dates from March 6, 2017.
 ${ }^{2}$ You might also like to be reminded that integrable functions are defined to be bounded.

[^1]: ${ }^{3}$ This condition is sometimes called second-countability. Naming schemes in general topology leave a lot to be desired; see also $T_{2 \frac{1}{2}}$ spaces.

