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1 For submission to Thayer Anderson

Problem 1.1. Let g1, g2 : R2 → R both be continuous functions. Define f : R2 → R by the following
integral:

f(x, y) =

∫ x

0

g1(t, 0) dt+

∫ y

0

g2(x, t) dt.

(You can think of f as measuring the total charge for moving from (0, 0) to (x, y) along a rectilinear path.)

1. Demonstrate ∂f
∂y (x, y) = g2(x, y). (You’ll want to invoke the single-variable fundamental theorem of

calculus, which we have not yet proven. Go ahead.)

2. How can the definition of f be modified so that ∂f
∂x (x, y) = g1(x, y)? Can you get both identities to

work at once?

3. Find a function f with ∂f
∂x = x and ∂f

∂y = y. Now find a function f with ∂f
∂x = y and ∂f

∂y = x.

4. Explain why you don’t expect to be able to find a function f with ∂f
∂x = y and ∂f

∂y = −x.

Solution. 1. Certainly we have

∂

∂y

(∫ x

0

g1(t, 0) dt+

∫ y

0

g2(x, t) dt

)
=

∂

∂y

(∫ y

0

g2(x, t) dt

)
,

since the first term has no dependence on y. To evaluate the remaining term, we directly appeal to the
single-variable fundamental theorem of calculus: the derivative of the integral of a continuous function
recovers the original function. Hence,

∂

∂y

(∫ y

0

g2(x, t) dt

)
= g2(x, y).

2. You can always integrate along the “other” rectilinear path:

fmodified(x, y) =

∫ y

0

g2(0, t) dt+

∫ x

0

g1(t, y) dt.

You certainly can’t get both to work in general; if g1 and g2 happen to be continuously differentiable
themselves, then if both identities are true then it must certainly also be the case that

∂

∂x
g2 =

∂2

∂x∂y
f =

∂2

∂y∂x
f =

∂

∂y
g1,

because the mixed partials of f would then commute. This puts a serious interdependence on g1 and
g2, which is typically not satisfied, and so no such function f could possibly exist.
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3. f = 1
2 (x2 + y2) works for the first condition, which you can get by setting g1(t, 0) = t and g2(x, t) = t.

For the second, we can use f = x · y, which you can get by setting g1 = 0 and g2(x, t) = x.

4. Again, mixed partials are supposed to commute for nice functions, but ∂2

∂x∂yf = ∂
∂x (−x) = −1 while

∂2

∂y∂xf = ∂
∂y (y) = 1 shows that that commutation does not hold here. (ECP)

Problem 1.2. For f : R2 → R, show that if ∂f
∂y = 0 then f is independent of the second variable — i.e.,

f(x, y1) = f(x, y2) for any y1, y2 ∈ R. If both ∂f
∂x = 0 and ∂f

∂y = 0, show that f is a constant function.

Solution. This is entirely a consequence of the mean value theorem. If an everywhere differentiable function
were not constant, then the nonzero slope of the secant line passing through two points witnessing the
nonconstancy guarantee (by the MVT) a point between where the derivative matches the secant slope.
Since ∂/∂y is computed by restricting to a particular value x = a and considering the function as a single-
variable function, the MVT applies and shows that f cannot depend on the second variable. If ∂f/∂x is also
zero, then we can always build a rectilinear path between any pair of points (x0, y0) to (x1, y1) by

(x0, y0)→ (x0, y1)→ (x1, y1).

Since the function is independent of the second variable, its value on the first two points is the same. Since
the function is also independent of the first variable, its value on the last two points on the same. By
transitivity, its values agree on the first and third points. (ECP)

2 For submission to Davis Lazowski

Problem 2.1. 1. Let f : R → R be a differentiable function, and assume f ′(a) 6= 0 for all a ∈ R. Show
that f is injective.

2. Now consider f : R2 → R2, described by the formula

f

(
x
y

)
=

(
ex cos y
ex sin y

)
.

Show that det(D(a,b)f) 6= 0 for all (a, b) ∈ R2, and yet f is not injective.1

Solution. 1. Otherwise, there exists a, b: f(a) = f(b). By the mean value theorem then there exists c:

f ′(c) = f(b)−f(a)
b−a = 0. Therefore contradiction.

2. The Jacobian is generally (
ex cos y −ex sin y
ex sin y ex cos y

)
= ex

(
cos y − sin y
sin y cos y

)
So this is ex times the rotation matrix R(y), which is invertible. Therefore the determinant is nonzero
everywhere with these two components. However f(x, y) = f(x, 2π + y). (DL)

Problem 2.2. The statement of the inverse function theorem for a function f requires that the derivative
f ′ be continuous. Consider the following function:

f(x) =

{
x
2 + x2 sin 1

x if x 6= 0,

0 if x = 0.

1. Check that f is differentiable everywhere and that its derivative fails to be continuous at 0.

1The inspiration for this function comes from the complex exponential: ea+bi = ea · (cos b + i sin b).
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2. Check that the conclusion of the inverse function theorem fails at 0.

Solution. 1. Away from zero, the function is differentiable with the chain rule and product rule.

For x > 0, we find that f ′(x) = 1
2 + 2x sin 1

x − cos 1
x .

At 0,
h

2
+
h2

2
sin

1

h
= 0 + f ′(0)h+ ε(0, h)

We can check that f ′(0) = 1
2 satisfies the definition. Then ε(0, h) = h2

2 sin 1
h , and h sin 1

h → 0 as h→ 0.

But certainly limx→0 2x sin 1
x − cos 1

x is not 0; in fact, the limit of the second term does not exist.
Therefore the function is not continuous around zero.

2. In particular, the inverse function theorem requires that f be invertible on some open neighbourhood
of 0.

Restrict f to (−ε, 0) ∪ (0, ε). We want to show that there are x, x′ ∈ (−ε, ε) such that f(x) = f(x′).
Equivalently, we can show that f ′(x′′) = 0 for some x′′ ∈ (−ε, 0) ∪ (0, ε).

By continuity of the derivative away from zero, it’s again enough to show that there are a, b in (0, ε)
so that f ′(a) > 0, f ′(b) < 0. Then between them there must be a point which evaluates to zero.

We can choose a = 1
nπ/2 , where n is an odd integer and sinnπ/2 = 1. By choosing sufficiently large n,

then 0 < a < ε, and

f ′(a) =
1

2
+ 2a > 0

We can choose b = 1
2mπ , where m is an integer , so that cos 2mπ = 1. Then

f ′(b) =
1

2
− 1 = −1

2

And b can be as small as we like by choosing large m. (DL)

3 For submission to Handong Park

Problem 3.1. Consider the domain

A = {(x, y) ∈ R2 | x < 0} ∪ {(x, y) ∈ R2 | x ≥ 0 and y 6= 0} = R2 \ ([0,∞)× {0}).

1. Let f : A→ R be a differentiable function with ∂f
∂x = 0 and ∂f

∂y = 0. Show f is constant.2

2. Find a differentiable function f : A→ R satisfying ∂f
∂y = 0 but which is not independent of y.

Solution. 1. Take some f : A → R satisfying the conditions, and take (x1, y1) and (x2, y2) in A. If
x1 = −1, we have that f(−1, y1) = f(x1, y1). Else, by the Mean Value Theorem, we know that for
x1 6= −1, there exists a between x1 and −1 such that

∂f

∂x
(a, y1) =

f(x1, y1)− f(−1, y1)

x1 − (−1))
→ f(x1, y1) = f(−1, y1)

Use similar reasoning to show that if y1 = y2, we have f(−1, y1) = f(−1, y2), and if y1 6= y2, we have
by the Mean Value Theorem that there is some b between y1 and y2 such that

∂f

∂y
(−1, b) =

f(−1, y1)− f(−1, y2)

y1 − y2
→ f(−1, y1) = f(−1, y2)

All together, we find that f(x1, y1) = f(−1, y1) = f(−1, y2) = f(x2, y2), showing that f is constant.

2Note that this is not a repeat of Problem 1.2, since the domain is different.
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2. There are many examples that work. One example is

f(x) =

{
−x2 (x, y) ∈ (−∞, 0)× R ∪ [0,∞)× (−∞, 0)

x2 else

The partial derivative with respect to y is certainly 0, yet the derivative depends on y due to the
function’s definition, although continuity and differentiability are indeed satisfied. (HP)

Problem 3.2. Let f : Rn → R be differentiable. Given a point a ∈ Rn and a direction v ∈ TaRn, the
associated directional derivative of f is defined by

lim
t→0

f(a+ tv)− f(a)

t
,

which we will temporarily denote by Dvaf .

1. Choosing v = ei to be a standard basis vector, show Deia f = ∂f
∂xi

.

2. Choosing a scalar k ∈ R, show Dkva f = k · Dvaf .

3. Now suppose that f is a differentiable function. Show that Dvaf = (Daf)(v), so that we have not
invented a new notion of derivative. Conclude that Dv+w

a f = Dvaf + Dwa f .

Solution. 1. Let ei be the standard basis vector in question, then it is just

ei = (0, 0, ..., 0, 1, 0, ..., 0, 0)

(While this could probably be written vertically, we can write it in transpose form to make notation
easier.)
Then, we just have that by definition

lim
t→0

f(a+ tei)− f(a)

t
= lim
t→0

f(a1, ..., ai−1, ai + t, ai+1, ..., an)− f(a1, ..., an)

t

=
∂f

∂i

2. Let u = tk, then we have t = u
k . Since u is also a scalar that tends to zero as t tends to zero, we get

lim
t→0

f(a+ uv)− f(a)
u
k

= lim
u→0

k(f(a+ uv)− f(a))

u
= k · Dva

3. Since f is differentiable, there exists the derivative Daf such that

lim
h→0

|f(a+ h)− f(a)− (Daf)(h)|
||h||

= 0

Choose some v ∈ TaRn. If v = 0, we know that Daf(v) = 0 by linearity, and we have that

Dvaf = lim
t→0

f(a+ v)− f(a)

t
= lim
t→0

f(a)− f(a)

t
= 0

so that Daf(v) = Dvaf in this case.
If v 6= 0, we have that

lim
h→0

|f(a+ h)− f(a)− (Daf)(h)|
||h||

= 0→ lim
t→0

f(a+ tv)− f(a)− (Daf)(tv)

t||v||
= 0

→ lim
t→0

∣∣∣∣f(a+ tv)− f(a)

t
− (Daf)(v)

∣∣∣∣ 1

||v||
= 0
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Since ||v|| is nonzero, and the whole limit is zero, we get that Daf(v) must equal the left term, which
is the definition of Dvaf , so we must have that Daf(v) = Dvaf .
Then, from what we’ve proved, we can immediately state by linearity of Daf that

Dv+w
a f = (Daf)(v + w) = (Daf)(v) + (Daf)(w) = Dvaf + Dwa f

and we are done. (HP)

4 For submission to Rohil Prasad

Problem 4.1. Let A ⊆ Rn be an open set, and let f : A → Rn be a continuously differentiable injective
function with detDaf 6= 0 for all a ∈ A.

1. Show that the image f(A) ⊆ Rn is an open set.

2. Show that f−1 : f(A)→ A is differentiable.

3. Show that for any open B ⊆ A, f(B) is also an open set.

Solution. 1. Since the differential has nonzero determinant everywhere, for all a ∈ A there exists an open
neighborhood V around f(a) contained inside f(A) and a continuously differentiable map g : V →
f−1(V ) ⊂ A such that fg = id and gf |V = id.

Therefore, every point in f(A) has an open neighborhood around it that is also contained in f(A). By
definition, this means f(A) is open.

2. By the inverse function theorem, we can produce open subsets V, V ′ ⊆ f(A) and continuously dif-
ferentiable maps g : V → f−1(V ), g′ : V ′ → f−1(V ′) that are inverse to f in the way described
above.

Then, for any x ∈ V ∩ V ′, we must have f(g(x)) = f(g′(x)) by the inverse property, so it follows by
injectivity of f that g(x) = g′(x).

Thus, for all a ∈ A we can use the inverse function theorem to construct a neighborhood Va and
an inverse ga : Va → f−1(Va). It follows that we get an inverse map f−1 : f(A) → A by setting
f−1(a) = ga(a).

As we have checked above, f−1 is well-defined and furhermore, since ga is continuously differentiable at
a and f−1 agrees with ga in an open set around a, it follows that f−1 is also continuously differentiable
at a for every a ∈ A.

3. Since f−1 : f(A) → A is continuous as we proved above, it pulls back open sets to open sets. Since
f−1(f(B)) = B, and B is open, it follows that f(B) is open as well. (RP)

Problem 4.2. Let f : R2 → R be a continuously differentiable function. Show that f cannot be injective.
Now generalize this to the case of f : Rn → Rm with m < n.

Solution. Assume for the sake of contradiction that f : R2 → R is injective.
Then, it follows that ∂xf(x, y) is not identically zero for any y, since otherwise we would have f is

constant along some fixed line in R2 and would not be injective.
Now define g(x, y) : R2 → R2 by g(x, y) = (f(x, y), y). Then we calculate the Jacobian of g at (x, y) to

be [
∂xf(x, y) ∂yf(x, y)

0 1

]
.

The determinant of this is just ∂xf(x, y). By our reasoning above, there exists (x, y) such that this is
nonzero, and so we can apply the inverse function theorem to get a neighborhood V ⊂ R2 of (x, y) and a
map h : V → g−1(V ) that is continuously differentiable and inverse to g where defined.
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Now since V is open, we can find some y′ sufficiently close to (but not equal to ) y such that (f(x, y), y′) ∈
V . Set (x′, y′) = h(f(x, y), y′). Since h is an inverse, we have g(x′, y′) = (f(x, y), y′). However, by definition
of g, g(x′, y′) = (f(x′, y′), y′). Therefore, we require f(x′, y′) = f(x, y) and arrive at a contradiction.

The case for f : Rn → Rm proceeds identically in the case where there is some point p ∈ Rn such that
Dpf has full rank.

Again consider g(x, y) : Rn → Rn given by g(x, y) = (f(x, y), y), where x ∈ Rm and y ∈ Rn−m.
Then the Jacobian of g at p looks like

Dpg =

(
Dpf

0 Im

)
and since Dpf is of rank m, it is clear by using row reduction or some other method that Dpg has rank

n. Then, we apply the inverse function theorem like in the other case and we are done.
Now consider the case where Dpf has rank less than m for every p ∈ Rn. We will present a proof here

different from the one in class that f cannot be injective in this case.
We will make the following slightly more general claim:

Claim: A continuously differentiable map f : U → V of open sets U ⊆ Rn, V ⊆ Rm with n > m and no
differential of rank m cannot be injective.

We will show this by induction. The base case, m = 1, is immediate. In this case, the differential having
rank less than m implies that all of the partial derivatives vanish, which implies that f is constant and
therefore cannot be injective.

Let 0 < k < m be the maximal rank attained by the differentials of f , and assume for the sake of
contradiction that f is injective. Now assume that a point (x, y) ∈ U achieves that rank. Then, there exist
invertible matrices L1, L2 such that L1 ·D(x,y)f ·L2 is equal to the projection matrix sending (x1, . . . , xn) 7→
(x1, . . . , xk, 0, . . . , 0) (the matrices encode row and column operations resp. on D(x,y)f).

Since L1 = DpL1, L2 = DpL2 for every point p, it follows by the chain rule that D(x,y)(L1 ◦ f ◦ L2) is
the projection matrix described above. Since f is injective iff L1 ◦ f ◦L2 is by invertibility of L1, L2, we can
just assume without loss of generality that D(x,y)f is this projection matrix.

Now, compose f with the projection πk : Rm → Rk onto the first k coordinates. Then we have πk is
linear, so it follows that D(x,y)πkf is projection from Rn onto the first k coordinates, which has full rank.
Then, set g = πkf − πkf(x, y), so g(x, y) = 0 and since it differs by a constant, it has the same differentials
as πkf .

Therefore, we can apply the implicit function theorem to produce a continuous, differentiable function
h : A→ B for A ⊆ Rn−k, B ⊆ Rk open such that g(x, h(x)) = 0 for any x ∈ A.

Now set πm−k : Rm → Rm−k to be the projection onto the last m − k coordinates. We define ϕ : A →
Rm−k by ϕ(x) = πm−kg(x, h(x)). If f is injective, then by definition we must have g is injective as well,
so it follows ϕ is injective. Furthermore, since everything is continuously differentiable it follows that ϕ is
continuously differentiable as well.

Therefore, we have produced a continuously differentiable, injective map from an open set of Rn−k to
an open set of Rm−k. Since these are respectively less than n,m we can apply our inductive hypothesis to
arrive at a contradiction and show that f is not injective. (RP)

Solution. For completeness’s sake, I will also give the version of the solution from class. Our solution to the
first part is identical to Rohil’s, and we additionally note that it applies essentially without modification to
functions of the form Rn → R (i.e., in the case m = 1). We now seek to inductively reduce the general case
to the specific case of m = 1.

Suppose, for technical reasons, that f is merely defined on an open subset W ⊆ Rn. Consider its first
component, f1. If this component is a constant function, then it cannot affect an injectivity argument: a pair
of points x, x′ ∈W with (f2, . . . , fm)(x) = (f2, . . . , fm)(x′) must also have f(x) = f(x′), since f1(x) = f1(x′)
automatically. Hence, if f1 is a constant function, we may reduce to the case of (f2, . . . , fm) : W → Rm−1.
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Now consider instead the more interesting case where f1 is not a constant function. Starting just with a
pair of points (x1, . . . , xn) and (x′1, . . . , x

′
n) with different outputs, we may compare the intermediate pairs

where we change just one coordinate, like

(x1, . . . , xj , x
′
j+1, . . . , x

′
n) vs. (x1, . . . , xj−1, x

′
j , . . . , x

′
n),

and at some index j there must be a change in the output of f1. Without loss of generality, we may as well
re-order the inputs so that j = 1. We can even find an open set on which ∂f1

∂x1
6= 0, on which we can apply

the inverse function theorem to

g(x1, . . . , xn) = (f1(x1, . . . , xn), x2, . . . , xn)

to get a local inverse (s1, . . . , sn) with the property that the composition f ◦ s = (x1, r2, . . . , rn) untangles
the first coordinate (at the cost of further tangling the others). Note because s is invertible, the failure of
f ◦ s to be injective is identical to the failure of f to be injective, so we may study f ◦ s instead.

We now come to the dimension reduction. Select a particular value x1 = a1 for the first coordinate so
that the hyperplane determined by this equation cuts out a nonempty relative open set from the domain
of s. This has the delightful effect of putting us in the first situation: after restricting to x1 = a1, the
first coordinate becomes a constant function, and so we discard not only a dimension from our domain (by
passing to the restriction x1 = a1) but also a dimension from our codomain (by ignoring the first coordinate,
which no longer contains any information). (ECP)
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