Homework \#2 Solutions

Thayer Anderson, Davis Lazowski, Handong Park, Rohil Prasad

Eric Peterson

1 For submission to Thayer Anderson

Problem 1.1. A function $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ is bilinear when it satisfies:

$$
\begin{array}{r}
f(c x, y)=f(x, c y)=c f(x, y) \\
f\left(x+x^{\prime}, y\right)=f(x, y)+f\left(x^{\prime}, y\right) \\
f\left(x, y+y^{\prime}\right)=f(x, y)+f\left(x, y^{\prime}\right)
\end{array}
$$

1. Show that if f is bilinear, then

$$
\lim _{(h, k) \rightarrow 0} \frac{\|f(h, k)\|}{\|(h, k)\|}=0 .
$$

2. Prove $D_{(a, b)} f(x, y)=f(a, y)+f(x, b)$
3. Conclude from this the product rule for functions with target \mathbb{R}.

Solution. 1. Analogous to the Problem 1.1.2, we wish to first show that f is a bounded operator. (Although we will be more generous in this case and show that it behaves at worst quadratically). Take orthonormal bases $\left(e_{1}, \ldots, e_{n}\right)$ and $\left(g_{1}, \ldots, g_{m}\right)$ of \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. Suppose that $x=\sum_{i=1}^{n} a_{i} e_{i}+\sum_{i=1}^{m} b_{i} g_{i} \in \mathbb{R}^{l}$. Then

$$
\begin{aligned}
& \|f(x)\| \leq \sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i}\right| \cdot\left|b_{j}\right|| | f\left(e_{i}, g_{j}\right) \| \\
\leq & \left|\max a_{i}\right| \cdot\left|\max b_{i}\right| \cdot n m \sum_{i, j}\left\|f\left(e_{i}, g_{j}\right)\right\| \\
\leq & \left.\left(n m \sum_{i, j}\left\|f\left(e_{i}, g_{j}\right)\right\|\right) \cdot(\|u\|+\| v| |)\right)
\end{aligned}
$$

where we let $x=(u, v)$ with $U \in \mathbb{R}^{n}$ and $v \in \mathbb{R}^{m}$. Let $M=\left(n m \sum_{i, j}\left\|f\left(e_{i}, g_{j}\right)\right\|\right)$. Then

$$
\|f(x)\| \leq M \cdot(\|u\|+\|v\|) \leq M \cdot 2(\max \{\|u\|,\|v\|\}) \leq 2 M\|x\|
$$

Then we see that f is bounded and retrieve the limiting behaviour identically to Problem 1.1.2.
2. We will test our putative derivative to verify that it is, in fact, the derivative:

$$
\begin{array}{r}
\lim _{(x, y) \rightarrow 0} \frac{\|f(a+x, b+y)-(f(a, b)+f(a, y)+f(x, b))\|}{\|(x, y)\|} \\
=\lim _{(x, y) \rightarrow 0} \frac{\| f(a+x, b+y)-(f(a+x, b+y)-f(x, y)))}{\|(x, y)\|} \\
=\lim _{(x, y) \rightarrow 0} \frac{\|f(x, y)\|}{\|(x, y)\|}
\end{array}
$$

and by the previous problem this limit is 0 and the derivative is as expected.
3. Define the function $p: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as $p(x, y)=x y$. This function is evidently linear. Then the derivative of p at (a, b) is given by the previous part:

$$
\left(D_{(a, b)} p\right)(x, y)=p(a, y)+p(x, b)=a y+x b
$$

Take functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$. Then:

$$
\begin{array}{r}
D_{a}(f g)=D_{a} p(f, g)=\left(D_{(f(a), g(a))} p\right) \circ\left(D_{a} f, D_{a} g\right) \\
=(f(a) y+x g(a))\left(D_{a} f, D_{a} g\right)=f(a)\left(D_{a} g\right)+\left(D_{a} f\right) g(a) \tag{TA}
\end{array}
$$

and we are done.
Problem 1.2. Here's the same problem with more indices. Consider the product $V=\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{m}}$ of Euclidean spaces of various dimensions. A function $f: V \rightarrow \mathbb{R}^{l}$ is called multilinear when for any choice of tuple of vectors $\left(v_{1}, \ldots, v_{m}\right)$ the function

$$
\begin{array}{r}
f_{j}: \mathbb{R}^{n_{j}} \rightarrow \mathbb{R}^{l} \\
f_{j}(v)=f\left(v_{1}, \ldots, v_{j-1}, v, v_{j+1}, \ldots, v_{m}\right)
\end{array}
$$

describes a linear function.

1. For any point $\left(a_{1}, \ldots, a_{m}\right) \in V$, difference vector $\left(h_{1}, \ldots, h_{m}\right) \in V \simeq T_{a} V$ and pair of coordinates $i<j$, show the following:

$$
\lim _{\|h\| \rightarrow 0} \frac{\| f\left(a_{1}, \ldots, a_{i-1}, h_{i}, a_{i+1}, \ldots, a_{j-1}, h_{j}, a_{j+1}, \ldots, a_{m}\right)}{\|h\|}=0
$$

2. Conclude that the derivative of f is given by

$$
\left(D_{a} f\right)(h)=\sum_{j=1}^{m} f\left(a_{1}, \ldots, a_{j-1}, h_{j}, a_{j+1}, \ldots, a_{m}\right)
$$

Solution. 1. Take the restriction of f to the arguments i and j of interest: $g: \mathbb{R}^{n_{i}} \times \mathbb{R}^{n_{j}} \rightarrow \mathbb{R}^{l}$ defined by

$$
g\left(h_{i}, h_{j}\right)=f\left(a_{1}, \ldots, a_{i-1}, h_{i}, a_{i+1}, \ldots, a_{j-1}, h_{j}, a_{j+1}, \ldots, a_{m}\right)
$$

g inherits bilinearity from the multi-linearity of f. Then we see:

$$
\lim _{\|h\| \rightarrow 0} \frac{\left\|g\left(h_{i}, h_{j}\right)\right\|}{\|h\|} \leq \lim _{\left\|\left(h_{i}, h_{j}\right)\right\| \rightarrow 0} \frac{\| g\left(h_{i}, h_{j}\right)}{\left\|\left(h_{i}, h_{j}\right)\right\|}=0
$$

after an application of 1.1.1.
2. We test our candidate derivative in the limit:

$$
\lim _{\|h\| \rightarrow 0} \frac{\left\|f\left(a_{1}+h_{1}, \ldots, a_{m}+h_{m}\right)-f\left(a_{1}, \ldots, a_{m}\right)-\sum_{j=1}^{m} f\left(a_{1}, \ldots, a_{j-1}, h_{j}, a_{j+1}, \ldots, a_{m}\right)\right\|}{\|h\|}
$$

After applying multilinearity to the value of $f(a+h)$ (with vectors a and h) we are left with a sum over terms with every combination of an a or an h in each entry. The candidate derivative cancels all the terms with exactly one h. The value of $f(a)$ cancels the term with no $h \mathrm{~s}$. Now it remains to be shown that those terms with 2 or more h s go to 0 in the limit.

Consider the quantity

$$
\lim _{\|h\| \rightarrow 0} \frac{\left\|f\left(a_{1}, \ldots, h_{i_{1}}, \ldots, h_{i_{2}}, \ldots, h_{i_{k}}, \ldots, a_{m}\right)\right\|}{\|h\|}
$$

Where there is some enumeration i_{j} of the k-many indices containing an h instead of an a. Then:

$$
\begin{aligned}
& \lim _{\|h\| \rightarrow 0} \frac{\left\|f\left(a_{1}, \ldots, h_{i_{0}}, \ldots, h_{i_{1}}, \ldots, h_{i_{k}}, \ldots, a_{m}\right)\right\|}{\|h\|}=\lim _{\|h\| \rightarrow 0} \prod_{j=3}^{k}\left|h_{j}\right| \cdot \frac{\left\|f\left(a_{1}, \ldots, h_{i_{1}}, \ldots, h_{i_{2}}, \ldots, 1, \ldots, a_{m}\right)\right\|}{\|h\|} \\
& \leq \lim _{\left(h_{i}, h_{j}\right) \rightarrow 0} \prod_{j=3}^{k}\left|h_{j}\right| \cdot \frac{\left\|f\left(a_{1}, \ldots, h_{i_{1}}, \ldots, h_{i_{2}}, \ldots, 1, \ldots, a_{m}\right)\right\|}{\|h\|}
\end{aligned}
$$

which is equal to 0 by Problem 1. And we are done.

2 For submission to Davis Lazowski

Problem 2.1. In this problem, we show that C^{∞} functions are generally not determined by their Taylor expansion. ${ }^{1}$

1. Define $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ by the following piecewise formula:

$$
f_{1}(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Show that f_{1} is a C^{∞} function and that $f_{1}^{(j)}(0)=0$ for all orders j.
2. Now define $f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{2}(x)= \begin{cases}e^{-(x-1)^{-2}} \cdot e^{-(x+1)^{-2}} & \text { if } x \in(-1,1) \\ 0 & \text { otherwise }\end{cases}
$$

Show that f_{2} is a C^{∞} function which is positive on $(-1,1)$ and zero elsewhere.
3. For any $\varepsilon>0$, show that there is a C^{∞} function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g(x \leq 0)=0, g(x \geq \varepsilon)=1$, and $0 \leq g(x) \leq 1$. (If you want, you're welcome to use the single-variable fundamental theorem of calculus here. You're not obligated, of course.)

Solution. 1. Clearly, by the chain rule and $1 / x^{2}, e^{x}$ infinitely differentiable away from zero, the function is infinitely differentiable everywhere except zero. It's enough to show compute $f_{1}^{(j)}(0)$ to all orders. We can observe that at any order, where it exists,

$$
f^{(j)}(x)=e^{-\frac{1}{x^{2}}} \sum_{i=0}^{m_{j}} \frac{c_{i, j}}{x^{a_{i, j}}}
$$

Where $a_{i, j}$ is some positive integer, possibly zero.
Observe that

$$
\left|\frac{e^{-1 / x^{2}}}{x^{n}}\right| \leq\left|\frac{e^{-1 / x}}{x^{n}}\right|
$$

[^0]and we can change variables and take
$$
\lim _{y \rightarrow \infty} e^{-y} y^{n}
$$

Which goes to zero, for example by L'Hospitale's.
2. As a product of C^{∞} functions, it is C^{∞} directly - we can see the individual C^{∞} functions as $f_{1}(x-1)$ as $f_{1}(x+1)$. It is positive over $(-1,1)$ with e^{x}, for $x \in \mathbb{R}$, and 0 elsewhere by definition.
3. If we had g_{ε} for one such ε, then for ε^{\prime} we can define

$$
g_{\varepsilon^{\prime}}(x):=g_{\varepsilon}\left(\frac{\varepsilon x}{\varepsilon^{\prime}}\right)
$$

Which directly by the chain rule is smooth with g_{ε}. So it's enough to find it for one ε.
Now define

$$
\begin{equation*}
F(x):=\frac{\int_{-\infty}^{x} f_{2}(2 t-1) d t}{\int_{\mathbb{R}} f_{2}(2 t-1) d t} \tag{DL}
\end{equation*}
$$

This is C^{∞} as the integral of a C^{∞} function, 1 for $x \geq 1$ and 0 for $x \leq 0$.
Problem 2.2. We now use the functions from the previous problem to construct interesting functions on \mathbb{R}^{n}.

1. Let f_{2} be as above, and select any $\varepsilon>0$ and point $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$. Define a function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by the formula

$$
h\left(x_{1}, \ldots, x_{n}\right)=\prod_{j} f_{2}\left(\frac{x_{j}-a_{j}}{\varepsilon}\right) .
$$

Show that h is a C^{∞} function which is positive on the open rectangle $\prod_{j}\left(a_{j}-\varepsilon, a_{j}+\varepsilon\right)$ and zero elsewhere.
2. For $A \subseteq \mathbb{R}^{n}$ open and $C \subseteq A$ compact, show there is a nonnegative C^{∞} function $f: A \rightarrow \mathbb{R}$ such that $f(x \in C)>0$, and f becomes the zero function outside of some closed set contained in A.
3. Show we can choose the f from the previous part so that $0 \leq f(x) \leq 1$ and and $f(x \in C)=1$.

Solution. 1. It is C^{∞} as the product of C^{∞} functions, positive in the rectangle with each copy of f_{2}, and zero elsewhere with the copy of f_{2} such that $\left|\frac{x_{j}-a_{j}}{\varepsilon}\right| \geq 1$.
2. Choose d by Problem 2.2.3 of Pset 1 so that if $x \in \mathbb{R}^{n}-A, y \in C$, then $\|x-y\| \geq d$. Then let $\delta=\frac{d}{2}$. Cover C with an open cover of open squares of diagonal length δ or less. C can be covered with finitely many of these open squares, say $S_{1} \ldots . S_{n}$.
Define h_{j} as in part 1) to be positive on S_{j} and 0 elsewhere. Then let $f(x):=\sum_{j=1}^{n} h_{j}(x)$, which is C^{∞} as a finite sum of C^{∞} functions.
Now $\overline{S_{j}} \subset A$, because of the diagonal length we have chosen.
So $\bigcup_{j=1}^{n} \overline{S_{j}}$ is a closed set outside of which f is the zero function.
3. By compactness, h from the last part has a minimum over C; say δ. Choose g as in part 2.1.3 so that $x \geq \delta \Longrightarrow g(x)=1$. Then $g \circ h$ is the desired function.

3 For submission to Handong Park

Let's keep it going from Thayer's part with some applications.
Problem 3.1. Recall that inner products give examples of bilinear functions. Define $I P: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by the following formula:

$$
I P(x, y)=\langle x, y\rangle
$$

where $\langle-,-\rangle$ is the usual Euclidean inner product.

1. Describe $D_{(a, b)} I P$.
2. Given two differentiable functions $f, g: \mathbb{R} \rightarrow \mathbb{R}^{n}$, form the composite $h(t)=\langle f(t), g(t)\rangle$. For any $t_{0} \in \mathbb{R}$, show

$$
h^{\prime}\left(t_{0}\right)=\left\langle\left(D_{t_{0}} f\right)(t), g\left(t_{0}\right)\right\rangle+\left\langle f\left(t_{0}\right),\left(D_{t_{0}} g\right)(t)\right\rangle,
$$

where we are identifying the $(n \times 1)$-matrix $D_{t_{0}} f$ with a column vector, or an element in \mathbb{R}^{n}.
3. For $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ differentiable and $\|f(t)\|=1$ for all $t \in \mathbb{R}$, conclude that for any $t_{0} \in \mathbb{R}$ we have

$$
\left\langle\left(D_{t_{0}} f\right)(t), f\left(t_{0}\right)\right\rangle=0 .
$$

Solution. 1. The inner product is a bilinear function, hence we can use Problem 1.1.2 to show

$$
\left(D_{(a, b)} I P\right)(h, k)=\langle a, k\rangle+\langle h, b\rangle .
$$

2. I'm going to call the composite $p(t)=\langle f(t), g(t)\rangle$ instead, because I've decided I don't like the conflict of h-the-function and h-the-displacement. ${ }^{2}$ This is then a matter of applying the chain rule:

$$
\begin{aligned}
\left(D_{t_{0}} p\right)(h) & =\left(D_{\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)} I P \circ D_{t_{0}}(f, g)\right)(h) \\
& =D_{\left(f\left(t_{0}\right), g\left(t_{0}\right)\right)} I P \circ\left(\left(D_{t_{0}} f\right)(h),\left(D_{t_{0}} g\right)(h)\right) \\
& =\left\langle f\left(t_{0}\right),\left(D_{t_{0}} g\right)(h)\right\rangle+\left\langle\left(D_{t_{0}} f\right)(h), g\left(t_{0}\right)\right\rangle .
\end{aligned}
$$

3. This looks like one half of the expression we were just dealing with, so we set $f=g$. In this case, the function $p(t)=\langle f(t), f(t)\rangle=\|f(t)\|^{2}=1$ becomes a constant function, hence its derivative vanishes. From the previous part, we also have a generic formula for the derivative of any such composite p, and marrying these formulas gives

$$
\begin{equation*}
0=\left(D_{t_{0}} p\right)(h)=\left\langle f\left(t_{0}\right),\left(D_{t_{0}} f\right)(h)\right\rangle+\left\langle\left(D_{t_{0}} f\right)(h), f\left(t_{0}\right)\right\rangle=2\left\langle\left(D_{t_{0}} f\right)(h), f\left(t_{0}\right)\right\rangle . \tag{ECP}
\end{equation*}
$$

4 For submission to Rohil Prasad

Problem 4.1. We now use this technology to calculate the derivative of the determinant. Use the columns of an $(n \times n)$ matrix M to present it as an element as

$$
M \in \overbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}^{n \text { times }} .
$$

1. Demonstrate $\left(D_{a} \operatorname{det}\right)(v)=\sum_{j=1}^{n} \operatorname{det}\left(a_{1}|\ldots| a_{j-1}\left|v_{j}\right| a_{j+1}|\ldots| a_{n}\right)$.

[^1]2. Assemble a collection of differentiable functions $a_{i j}: \mathbb{R} \rightarrow \mathbb{R}$ into a matrix $\left(a_{i j}\right)_{i j}$, and set $f(t)=$ $\operatorname{det}\left(a_{i j}(t)\right)$. Calculate its derivative to be
\[

\left(D_{t_{0}} f\right)(h)=\sum_{j=1}^{n} \operatorname{det}\left($$
\begin{array}{c|c|c|c|c|c|c}
a_{11}\left(t_{0}\right) & \cdots & a_{1(j-1)}\left(t_{0}\right) & a_{1 j}^{\prime}\left(t_{0}\right) \cdot h & a_{1(j+1)}\left(t_{0}\right) & \cdots & a_{1 n}\left(t_{0}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1}\left(t_{0}\right) & \cdots & a_{n(j-1)}\left(t_{0}\right) & a_{n j}^{\prime}\left(t_{0}\right) \cdot h & a_{n(j+1)}\left(t_{0}\right) & \cdots & a_{n n}\left(t_{0}\right)
\end{array}
$$\right) .
\]

3. Take f as in the previous part, and suppose $f(t) \neq 0$ for all t. Given $b_{1}, \ldots, b_{n}: \mathbb{R} \rightarrow \mathbb{R}$ differentiable, let $x_{1}, \ldots, x_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be functions satisfying the matrix equation

$$
\left(a_{i j}(t)\right)_{i j} \cdot\left(x_{i}(t)\right)_{i}=\left(b_{i}(t)\right)_{i}
$$

guaranteed by the invertibility of $\left(a_{i j}(t)\right)_{i j}$. Show that the functions x_{i} are all differentiable and calculate their derivative.

Solution. 1. Recall a theorem of Axler that the determinant considered as a function on the columns of the matrix, i.e. as a map

$$
\operatorname{det}: \overbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}^{n \text { times }} .
$$

is multilinear.
Therefore, by problem 1.2 of this problem set, we can plug the determinant function to get exactly

$$
\left(D_{a} \operatorname{det}\right)(v)=\sum_{j=1}^{n} \operatorname{det}\left(a_{1}|\ldots| a_{j-1}\left|v_{j}\right| a_{j+1}|\ldots| a_{n}\right)
$$

as desired.
2. Let $\left(a_{i j}(t)\right)_{i j}: \mathbb{R} \rightarrow \mathbb{R}^{n^{2}}$ denote the function given by packing all the $a_{i j}$'s together in a matrix.

Then, we find by definition $f=\operatorname{det} \circ\left(a_{i j}(t)\right)_{i j}$. By the Chain rule, it follows that

$$
D_{t_{0}}(f)(h)=D_{\left(a_{i j}\left(t_{0}\right)\right)_{i j}} \operatorname{det}\left(\left(a_{i j}^{\prime}\left(t_{0}\right)(h)\right)_{i j}\right)
$$

and therefore we can calculate by the first part the derivative in column notation:

$$
D_{t_{0}}(f)(h)=\sum_{j=1}^{n} \operatorname{det}\left(a_{1}\left(t_{0}\right)|\ldots| a_{j-1}\left(t_{0}\right)\left|a_{j}^{\prime}\left(t_{0}\right) \cdot h\right| a_{j+1}\left(t_{0}\right)|\ldots| a_{n}\left(t_{0}\right)\right) .
$$

which matches the matrix given in the problem statement.
3. Set $A(t)=\left(a_{i j}(t)\right)_{i j}$, and $A_{i}(t)$ to be the matrix formed by replacing the i th column of $A(t)$ with the column vector $\left(b_{k}(t)\right)_{k}$. By Cramer's rule, a solution to the system of equations is given by

$$
x_{i}(t)=\frac{\operatorname{det}\left(A_{i}(t)\right)}{\operatorname{det}(A(t))}
$$

for every i.
Since by assumption we have $\operatorname{det}(A(t)) \neq 0$ for every t and both the numerator and the denominator of the fraction are differentiable (as shown in part 2) it follows that $x_{i}(t)$ is differentiable as well for every i. We then use the quotient rule to calculate its differential to be

$$
\begin{equation*}
D_{t_{0}} x_{i}=\frac{D_{t_{0}} \operatorname{det}\left(A_{i}(t)\right) \cdot \operatorname{det}(A(t))-\operatorname{det}\left(A_{i}(t)\right) \cdot D_{t_{0}} \operatorname{det}(A(t))}{(\operatorname{det}(A(t)))^{2}} \tag{RP}
\end{equation*}
$$

which can be expanded out using the previous part if one desires.

[^0]: ${ }^{1}$ This stronger condition is sometimes called analyticity, and the function is called analytic.

[^1]: ${ }^{2}$ Yes, I wrote this assignment and so picked these bad original names myself.

