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1 For submission to Thayer Anderson

Problem 1.1. A function f : Rn × Rm → Rl is bilinear when it satisfies:

f(cx, y) = f(x, cy) = cf(x, y)

f(x+ x′, y) = f(x, y) + f(x′, y)

f(x, y + y′) = f(x, y) + f(x, y′)

1. Show that if f is bilinear, then

lim
(h,k)→0

||f(h, k)||
||(h, k)||

= 0.

2. Prove D(a,b)f(x, y) = f(a, y) + f(x, b)

3. Conclude from this the product rule for functions with target R.

Solution. 1. Analogous to the Problem 1.1.2, we wish to first show that f is a bounded operator. (Al-
though we will be more generous in this case and show that it behaves at worst quadratically).
Take orthonormal bases (e1, . . . , en) and (g1, . . . , gm) of Rn and Rm, respectively. Suppose that
x =

∑n
i=1 aiei +

∑m
i=1 bigi ∈ Rl. Then

||f(x)|| ≤
n∑

i=1

m∑
j=1

|ai| · |bj |||f(ei, gj)||

≤ |max ai| · |max bi| · nm
∑
i,j

||f(ei, gj)||

≤

nm∑
i,j

||f(ei, gj)||

 · (||u||+ ||v||))
where we let x = (u, v) with U ∈ Rn and v ∈ Rm. Let M =

(
nm

∑
i,j ||f(ei, gj)||

)
. Then

||f(x)|| ≤M · (||u||+ ||v||) ≤M · 2(max {||u||, ||v||}) ≤ 2M ||x||

Then we see that f is bounded and retrieve the limiting behaviour identically to Problem 1.1.2.

2. We will test our putative derivative to verify that it is, in fact, the derivative:

lim
(x,y)→0

||f(a+ x, b+ y)− (f(a, b) + f(a, y) + f(x, b))||
||(x, y)||

= lim
(x,y)→0

||f(a+ x, b+ y)− (f(a+ x, b+ y)− f(x, y)))

||(x, y)||

= lim
(x,y)→0

||f(x, y)||
||(x, y)||
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and by the previous problem this limit is 0 and the derivative is as expected.

3. Define the function p : R2 → R as p(x, y) = xy. This function is evidently linear. Then the derivative
of p at (a, b) is given by the previous part:(

D(a,b)p
)

(x, y) = p(a, y) + p(x, b) = ay + xb

Take functions f, g : R→ R. Then:

Da(fg) = Dap(f, g) = (D(f(a),g(a))p) ◦ (Daf,Dag)

= (f(a)y + xg(a))(Daf,Dag) = f(a)(Dag) + (Daf)g(a)

and we are done. (TA)

Problem 1.2. Here’s the same problem with more indices. Consider the product V = Rn1 × · · · × Rnm of
Euclidean spaces of various dimensions. A function f : V → Rl is called multilinear when for any choice of
tuple of vectors (v1, . . . , vm) the function

fj : Rnj → Rl

fj(v) = f(v1, . . . , vj−1, v, vj+1, . . . , vm)

describes a linear function.

1. For any point (a1, . . . , am) ∈ V , difference vector (h1, . . . , hm) ∈ V ' TaV and pair of coordinates
i < j, show the following:

lim
||h||→0

||f(a1, . . . , ai−1, hi, ai+1, . . . , aj−1, hj , aj+1, . . . , am)

||h||
= 0

2. Conclude that the derivative of f is given by

(Daf)(h) =

m∑
j=1

f(a1, . . . , aj−1, hj , aj+1, . . . , am).

Solution. 1. Take the restriction of f to the arguments i and j of interest: g : Rni ×Rnj → Rl defined by

g(hi, hj) = f(a1, . . . , ai−1, hi, ai+1, . . . , aj−1, hj , aj+1, . . . , am)

g inherits bilinearity from the multi-linearity of f . Then we see:

lim
||h||→0

||g(hi, hj)||
||h||

≤ lim
||(hi,hj)||→0

||g(hi, hj)

||(hi, hj)||
= 0

after an application of 1.1.1.

2. We test our candidate derivative in the limit:

lim
||h||→0

||f(a1 + h1, . . . , am + hm)− f(a1, . . . , am)−
∑m

j=1 f(a1, . . . , aj−1, hj , aj+1, . . . , am)||
||h||

After applying multilinearity to the value of f(a + h) (with vectors a and h) we are left with a sum
over terms with every combination of an a or an h in each entry. The candidate derivative cancels all
the terms with exactly one h. The value of f(a) cancels the term with no hs. Now it remains to be
shown that those terms with 2 or more hs go to 0 in the limit.
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Consider the quantity

lim
||h||→0

||f(a1, . . . , hi1 , . . . , hi2 , . . . , hik , . . . , am)||
||h||

Where there is some enumeration ij of the k-many indices containing an h instead of an a. Then:

lim
||h||→0

||f(a1, . . . , hi0 , . . . , hi1 , . . . , hik , . . . , am)||
||h||

= lim
||h||→0

k∏
j=3

|hj | ·
||f(a1, . . . , hi1 , . . . , hi2 , . . . , 1, . . . , am)||

||h||

≤ lim
(hi,hj)→0

k∏
j=3

|hj | ·
||f(a1, . . . , hi1 , . . . , hi2 , . . . , 1, . . . , am)||

||h||

which is equal to 0 by Problem 1. And we are done. (TA)

2 For submission to Davis Lazowski

Problem 2.1. In this problem, we show that C∞ functions are generally not determined by their Taylor
expansion.1

1. Define f1 : R→ R by the following piecewise formula:

f1(x) =

{
e−1/x

2

if x 6= 0,

0 otherwise.

Show that f1 is a C∞ function and that f
(j)
1 (0) = 0 for all orders j.

2. Now define f2 : R→ R by

f2(x) =

{
e−(x−1)

−2 · e−(x+1)−2

if x ∈ (−1, 1),

0 otherwise.

Show that f2 is a C∞ function which is positive on (−1, 1) and zero elsewhere.

3. For any ε > 0, show that there is a C∞ function g : R→ R such that g(x ≤ 0) = 0, g(x ≥ ε) = 1, and
0 ≤ g(x) ≤ 1. (If you want, you’re welcome to use the single-variable fundamental theorem of calculus
here. You’re not obligated, of course.)

Solution. 1. Clearly, by the chain rule and 1/x2, ex infinitely differentiable away from zero, the function

is infinitely differentiable everywhere except zero. It’s enough to show compute f
(j)
1 (0) to all orders.

We can observe that at any order, where it exists,

f (j)(x) = e−
1
x2

mj∑
i=0

ci,j
xai,j

Where ai,j is some positive integer, possibly zero.

Observe that ∣∣∣∣∣e−1/x
2

xn

∣∣∣∣∣ ≤
∣∣∣∣e−1/xxn

∣∣∣∣
1This stronger condition is sometimes called analyticity, and the function is called analytic.
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and we can change variables and take
lim
y→∞

e−yyn

Which goes to zero, for example by L’Hospitale’s.

2. As a product of C∞ functions, it is C∞ directly – we can see the individual C∞ functions as f1(x− 1)
as f1(x+ 1). It is positive over (−1, 1) with ex, for x ∈ R, and 0 elsewhere by definition.

3. If we had gε for one such ε, then for ε′ we can define

gε′(x) := gε(
εx

ε′
)

Which directly by the chain rule is smooth with gε. So it’s enough to find it for one ε.

Now define

F (x) :=

∫ x

−∞ f2(2t− 1)dt∫
R f2(2t− 1)dt

This is C∞ as the integral of a C∞ function, 1 for x ≥ 1 and 0 for x ≤ 0. (DL)

Problem 2.2. We now use the functions from the previous problem to construct interesting functions on
Rn.

1. Let f2 be as above, and select any ε > 0 and point (a1, . . . , an) ∈ Rn. Define a function h : Rn → R
by the formula

h(x1, . . . , xn) =
∏
j

f2

(
xj − aj

ε

)
.

Show that h is a C∞ function which is positive on the open rectangle
∏

j(aj − ε, aj + ε) and zero
elsewhere.

2. For A ⊆ Rn open and C ⊆ A compact, show there is a nonnegative C∞ function f : A→ R such that
f(x ∈ C) > 0, and f becomes the zero function outside of some closed set contained in A.

3. Show we can choose the f from the previous part so that 0 ≤ f(x) ≤ 1 and and f(x ∈ C) = 1.

Solution. 1. It is C∞ as the product of C∞ functions, positive in the rectangle with each copy of f2, and
zero elsewhere with the copy of f2 such that |xj−aj

ε | ≥ 1.

2. Choose d by Problem 2.2.3 of Pset 1 so that if x ∈ Rn −A, y ∈ C, then ||x− y|| ≥ d. Then let δ = d
2 .

Cover C with an open cover of open squares of diagonal length δ or less. C can be covered with finitely
many of these open squares, say S1....Sn.

Define hj as in part 1) to be positive on Sj and 0 elsewhere. Then let f(x) :=
∑n

j=1 hj(x), which is
C∞ as a finite sum of C∞ functions.

Now Sj ⊂ A, because of the diagonal length we have chosen.

So
⋃n

j=1 Sj is a closed set outside of which f is the zero function.

3. By compactness, h from the last part has a minimum over C; say δ. Choose g as in part 2.1.3 so that
x ≥ δ =⇒ g(x) = 1. Then g ◦ h is the desired function. (DL)
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3 For submission to Handong Park

Let’s keep it going from Thayer’s part with some applications.

Problem 3.1. Recall that inner products give examples of bilinear functions. Define IP : Rn ×Rn → R by
the following formula:

IP(x, y) = 〈x, y〉,

where 〈−,−〉 is the usual Euclidean inner product.

1. Describe D(a,b)IP .

2. Given two differentiable functions f, g : R → Rn, form the composite h(t) = 〈f(t), g(t)〉. For any
t0 ∈ R, show

h′(t0) = 〈(Dt0f)(t), g(t0)〉+ 〈f(t0), (Dt0g)(t)〉,

where we are identifying the (n× 1)–matrix Dt0f with a column vector, or an element in Rn.

3. For f : R→ Rn differentiable and ‖f(t)‖ = 1 for all t ∈ R, conclude that for any t0 ∈ R we have

〈(Dt0f)(t), f(t0)〉 = 0.

Solution. 1. The inner product is a bilinear function, hence we can use Problem 1.1.2 to show

(D(a,b)IP)(h, k) = 〈a, k〉+ 〈h, b〉.

2. I’m going to call the composite p(t) = 〈f(t), g(t)〉 instead, because I’ve decided I don’t like the conflict
of h–the–function and h–the–displacement.2 This is then a matter of applying the chain rule:

(Dt0p)(h) = (D(f(t0),g(t0))IP ◦Dt0(f, g))(h)

= D(f(t0),g(t0))IP ◦ ((Dt0f)(h), (Dt0g)(h))

= 〈f(t0), (Dt0g)(h)〉+ 〈(Dt0f)(h), g(t0)〉.

3. This looks like one half of the expression we were just dealing with, so we set f = g. In this case, the
function p(t) = 〈f(t), f(t)〉 = ‖f(t)‖2 = 1 becomes a constant function, hence its derivative vanishes.
From the previous part, we also have a generic formula for the derivative of any such composite p, and
marrying these formulas gives

0 = (Dt0p)(h) = 〈f(t0), (Dt0f)(h)〉+ 〈(Dt0f)(h), f(t0)〉 = 2〈(Dt0f)(h), f(t0)〉. (ECP)

4 For submission to Rohil Prasad

Problem 4.1. We now use this technology to calculate the derivative of the determinant. Use the columns
of an (n× n) matrix M to present it as an element as

M ∈
n times︷ ︸︸ ︷

Rn × · · · × Rn .

1. Demonstrate (Dadet)(v) =
∑n

j=1 det(a1| . . . |aj−1|vj |aj+1| . . . |an).

2Yes, I wrote this assignment and so picked these bad original names myself.
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2. Assemble a collection of differentiable functions aij : R → R into a matrix (aij)ij , and set f(t) =
det(aij(t)). Calculate its derivative to be

(Dt0f)(h) =

n∑
j=1

det

 a11(t0) · · · a1(j−1)(t0) a′1j(t0) · h a1(j+1)(t0) · · · a1n(t0)
...

...
...

...
...

...
...

an1(t0) · · · an(j−1)(t0) a′nj(t0) · h an(j+1)(t0) · · · ann(t0)

 .

3. Take f as in the previous part, and suppose f(t) 6= 0 for all t. Given b1, . . . , bn : R→ R differentiable,
let x1, . . . , xn : R→ R be functions satisfying the matrix equation

(aij(t))ij · (xi(t))i = (bi(t))i

guaranteed by the invertibility of (aij(t))ij . Show that the functions xi are all differentiable and
calculate their derivative.

Solution. 1. Recall a theorem of Axler that the determinant considered as a function on the columns of the
matrix, i.e. as a map

det :

n times︷ ︸︸ ︷
Rn × · · · × Rn .

is multilinear.
Therefore, by problem 1.2 of this problem set, we can plug the determinant function to get exactly

(Dadet)(v) =

n∑
j=1

det(a1| . . . |aj−1|vj |aj+1| . . . |an)

as desired.
2. Let (aij(t))ij : R→ Rn2

denote the function given by packing all the aij ’s together in a matrix.
Then, we find by definition f = det ◦ (aij(t))ij . By the Chain rule, it follows that

Dt0(f)(h) = D(aij(t0))ijdet((a′ij(t0)(h))ij)

and therefore we can calculate by the first part the derivative in column notation:

Dt0(f)(h) =

n∑
j=1

det(a1(t0)| . . . |aj−1(t0)|a′j(t0) · h|aj+1(t0)| . . . |an(t0)).

which matches the matrix given in the problem statement.
3. Set A(t) = (aij(t))ij , and Ai(t) to be the matrix formed by replacing the ith column of A(t) with the

column vector (bk(t))k. By Cramer’s rule, a solution to the system of equations is given by

xi(t) =
det(Ai(t))

det(A(t))

for every i.
Since by assumption we have det(A(t)) 6= 0 for every t and both the numerator and the denominator of

the fraction are differentiable (as shown in part 2) it follows that xi(t) is differentiable as well for every i.
We then use the quotient rule to calculate its differential to be

Dt0xi =
Dt0det(Ai(t)) · det(A(t))− det(Ai(t)) ·Dt0det(A(t))

(det(A(t)))2

which can be expanded out using the previous part if one desires. (RP)
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