Homework #1 Solutions

Thayer Anderson, Davis Lazowski, Handong Park, Rohil Prasad Eric Peterson

1 For submission to Thayer Anderson

Problem 1.1. For $x \in \mathbb{R}^n$, write $x = x_1e_1 + \cdots + x_ne_n$ in some orthonormal basis. Show $||x|| \leq \sum_{j=1}^n ||x_j||$. Solution. By definition, $||x||^2 = \langle x, x \rangle$. Then manipulate as follows:

$$|x||^{2} = \langle x, x \rangle = \left\langle \sum_{j=1}^{n} ||x_{j}||, \sum_{j=1}^{n} ||x_{j}|| \right\rangle$$
$$= \sum_{j=1}^{n} x_{j} \left\langle e_{i}, \sum_{j=1}^{n} ||x_{j}|| \right\rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{j} \overline{x_{j}} \langle e_{i}, e_{j} \rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{j} \overline{x_{j}} \delta_{i}(j) = \sum_{j=1}^{n} ||x_{j}||^{2}.$$

And then because $a^2 + b^2 \leq (a+b)^2$ for a, b > 0, the desired result is obtained.

- **Problem 1.2.** 1. For a linear function $f : \mathbb{R}^n \to \mathbb{R}^m$, show there exists a real number M such that $||f(v)|| \le M||v||$ for all v. (Note that M is not allowed to depend on v).
 - 2. Show that a linear function $f : \mathbb{R}^n \to \mathbb{R}^m$ is automatically continuous.
- Solution. 1. Fix an orthonormal basis for \mathbb{R}^n , e_1, \ldots, e_n . Let $S = \{||f(v)|| : ||v|| = 1\}$. I claim that S is bounded. To show this, I exhibit the following bound. Let $B = \max\{||f(e_1)||, \ldots, ||f(e_n)||\}$. As the maximum of a finite set of numbers, B is exists. Then suppose $v = x_1e_1 + \cdots + x_ne_n$ arbitrary such that ||v|| = 1. Then

$$||f(v)|| = ||x_1f(e_1) + \dots + x_nf(e_n)|| \le \sum ||x_i|| \le n \cdot B$$

by Problem 1. Thus $n \cdot B$ bounds S from above. Then $M := \sup(S)$ exists. Take v arbitrary. Then $||f(v)|| \leq M||v||$. To see this, suppose the contrary, namely that there exists a vector v with ||f(v)|| > M||v||. then we see

$$||f(v/||v||)|| = \frac{1}{||v||}||f(v)|| > M \cdot \frac{||v||}{||v||} = M$$

In that case, we see that the vector v/||v|| has norm 1 and ||f(v/||v||)|| exceeds the upper bound M. This is a contradiction.

(TA)

2. To show that f is continuous, we show that it is continuous at every point. Fix a vector v. Suppose that $\varepsilon > 0$ arbitrary. Let M be as above with respect to the function f. Then take $\delta = \varepsilon/2M$. Suppose that u satisfies $d(u, v) < \delta$. Then

$$d(f(u), f(v)) = ||f(u) - f(v)|| = ||f(u - v)|| \le M \cdot ||u - v|| < \varepsilon/2$$

and we are done.

Problem 1.3. Show that if $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at a, then it is also continuous at a.

Solution. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function differentiable at a. Suppose for the sake of contradiction that f is not continuous at a. Then there exists some fixed $\varepsilon_0 > 0$ such that there does not exist any $\delta > 0$ satisfying $||x - a|| < \delta \Rightarrow ||f(x) - f(a)|| < \varepsilon$. By differentiability of f at a, there exists a δ_0 such that $||x - a|| < \delta_0$ implies

$$\frac{||f(x) - f(a)||}{||x - a||} < \varepsilon_0$$

(note this is the same ε_0 as fixed above.) Then taking $\delta = \min\{1, \delta_0\}$. We see that $||x - a|| < \delta_0$ implies that $||f(x) - f(a)|| < \varepsilon$ which is a contradiction. (TA)

2 For submission to Davis Lazowski

Problem 2.1. For any subset $A \subseteq \mathbb{R}^n$ which is not closed, show that there exists a continuous function $f: A \to \mathbb{R}$ which is not bounded.

Solution. Then there is a sequence $\{a_n\}_{n\in\mathbb{N}}$ in A which converges in \mathbb{R}^n but does not converge in A. Let $\ell := \lim_{n\to\infty} a_n$.

Define $f_{\ell} : A \to \mathbb{R}$ as $f_{\ell}(x) := \frac{1}{||\ell - x||}$.

Claim. f_{ℓ} is not bounded on A.

If f_{ℓ} were bounded on A, it would be bounded on the sequence a_n . So there would be some C such that

$$\frac{1}{||\ell - a_n||} = f_\ell(a_n) \le C < \infty$$
$$\iff 0 < \frac{1}{C} \le ||\ell - a_n||$$

Therefore the a_n cannot converge to ℓ , therefore contradiction.

Claim. f_{ℓ} is continuous.

Importantly, this is with respect to the metric on A: f_{ℓ} isn't even well defined on \mathbb{R}^n .

Let $\{b_n\}$ be a sequence in A which converges to b. Then $||b_n|| \to ||b||$, and by translation invariance $||b_n - \ell|| \to ||b - \ell||$. Therefore $\frac{1}{||b_n - \ell||} \to \frac{1}{||b - \ell||}$, as desired. (DL)

Problem 2.2. Suppose that $A \subseteq \mathbb{R}^n$ is a closed set, that $B \subseteq \mathbb{R}^n$ is a compact set, and that $A \cap B = \emptyset$.

- 1. For fixed $y \in \mathbb{R}^n \setminus A$, show there exists a real value d > 0 such that for any $x \in A$, $||x y|| \ge d$.
- 2. Show that every continuous function $f: B \to \mathbb{R}$ achieves a minimum and maximum value.
- 3. Show that there exists a real value d > 0 such that for any $x \in A$ and $y \in B$, we have $||x y|| \ge d$.
- 4. Show that parts 2 and 3 both fail in \mathbb{R}^2 if we merely ask B to be closed but not compact.
- Solution. 1. Otherwise, we can find a sequence x_n so that $||x_n y|| < \frac{1}{n}$. The sequence x_n converges to y. But A is closed and $y \notin A$, therefore contradiction.

(TA)

- 2. f(B) is compact, so by Heine-Borel is closed and bounded. Its upper bound will be the maximum; its lower bound will be the minimum.
- 3. Since B is bounded, there is some closed interval containing it say [-b, b]. Enlarge this closed interval to $[-b \varepsilon, b + \varepsilon]$.

Now $\tilde{A} := A \cap [-b - \varepsilon, b + \varepsilon]$ is a closed and bounded set, so is compact. \tilde{A} also includes every point in A which is in at least ε of B. So if $\tilde{A} = \emptyset$, take $\varepsilon := d$.

Now we can define a function $f: \tilde{A} \times B \to \mathbb{R}$ by f(a, b) = ||a - b||. This function is continuous, and $\tilde{A} \times B$ is compact. Therefore $f(\tilde{A} \times B)$ is compact, so achieves a minimum and maximum. Call this minimum d. Now d > 0, because for every a the image f(a, B) is compact, so has a minimum ℓ_a , with $\ell_a > 0$ by part a), so $0 \notin f(\tilde{A} \times B)$.

4. If B is closed, there are counterexamples to 2). For example, take f = id. There are also counterexamples to 3). Take

$$A := \bigcup_{j \in \mathbb{Z}} [j, j + \frac{1}{2}]$$
$$B := \bigcup_{j \in \mathbb{Z}, |j| > 4} [j + \frac{1}{2} + \frac{1}{|j|}, j + 0.9]$$

Then we can find $j + \frac{1}{2} \in A$, $j + \frac{1}{2} + \frac{1}{|j|} \in B$, so that the distance between these points is $\frac{1}{|j|}$, which converges to 0 as $j \to \infty$. (DL)

Problem 2.3. Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ satisfies $|f(x)| \le ||x||^2$. Show that f is automatically differentiable at 0.

Solution. We need to find some $D_0 f$ such that

$$f(h) = f(0) + D_0 f(h) + \varepsilon(h)$$

And

$$\lim_{h \to 0} \frac{\varepsilon(h)}{h} = 0$$

Suppose such a $D_0 f$ existed. We have

$$|\varepsilon(h)| = |f(h) - f(0) - D_0 f(h)|$$

$$\leq ||h||^2 + |D_0 f(h)|$$

 So

$$\frac{|\varepsilon(h)|}{||h||} \le ||h|| + \frac{|D_0 f(h)|}{||h||}$$

If $D_0 f$ were not zero, then $\frac{|D_0 f(h)|}{||h||}$ would not converge to zero. This suggests that we guess $D_0 f = 0$. An alternative motivation for this guess could be: the derivative is supposed to be the linear change at a given point; but our bound tells us that there is only second order change in f at 0.

Then we can verify

$$\lim_{h \to 0} \frac{|f(h) - f(0)|}{||h||} = \lim_{h \to 0} \frac{|f(h)|}{||h||} \le \lim_{h \to 0} \frac{||h||^2}{||h||} \le \lim_{h \to 0} ||h|| = 0$$
(DL)

3 For submission to Handong Park

- **Problem 3.1.** 1. Let \mathcal{F} be a family of open sets, possibly infinite in length. Show that the union $\bigcup_{U \in \mathcal{F}} U$ is again an open set.
 - 2. Let U and V be two individual open sets. Show that $U \cap V$ is again an open set.
 - 3. Show that there exists a family \mathcal{F} of open sets such that $\bigcap_{U \in \mathcal{F}} U$ is not an open set.
- Solution. 1. Call the union $M = \bigcup_{U \in \mathcal{F}} U$. Given any point m in M, we must show that there exists R > 0 such that $B_R(m) \in M$. But for any $m \in M$, $m \in U$ for one of the open sets $U \in F$. Since each U is open, exists R_U such that $B_{R_U}(m) \subset U$ is completely contained. Since $U \subset M$, $B_{R_U}(m) \subset M$ is completely contained, and we are done.
 - 2. Given U and V open, and any $x \in U \cap V$, there exists $R_U > 0$ such that $B_{R_U}(x) \subset U$ and $R_V > 0$ such that $B_{R_V}(x) \subset V$. Take the minimum of R_U and R_V , call this R_{min} . Then $B_{R_{min}}(x) \subset U$ and $B_{R_{min}}(x) \subset V$, so $B_{R_{min}}(x) \subset U \cap V$, showing openness.
 - 3. There are several examples that work. One simple one is to take the set of all $\left(-\frac{1}{n}, \frac{1}{n}\right)$ open intervals for $n \in \mathbb{N}$ and intersect them, giving us the closed set [0, 0], which is not open. (HP)

Problem 3.2. Let $U \neq \emptyset$ be an open subset of \mathbb{R}^n and let $C \subseteq U$ be compact. Show that there exists a compact set D such that

$$C \subseteq D^{\circ} \subseteq D \subseteq U,$$

where D° denote the interior of D.

Solution. First off, we know that since U is open, $U^C \subset \mathbb{R}^n$ must be closed. We know that by part 2.2.3 of this homework, there must exist some $d > 0 \in \mathbb{R}$ such that given any $x \in U^C$ and $y \in C$, $||x - y|| \ge d$.

We can then use the fact that C is compact by considering the following open cover of C - for each $c \in C$, take $B_{0.5}(c)$. Then, the union of all these open balls gives us an open cover of C, since each $c \in C$ is contained. But since C is compact, only a finite subcover is needed - call this finite subcover $D^{\circ} = U_1, ..., U_n$, where each U_i is one of the open balls.

Then consider the cover given by $\overline{U}_1, ..., \overline{U}_n$ where each \overline{U}_i is the closure of the corresponding U_i - this is still a cover of C since all we've done is include more points (namely the boundary of each ball). Call this closed ball cover D.

D is completely contained in U since these balls have radius $\frac{d}{2}$, while the minimum distance between any point in C and U^C is d as stated above. Since D is just the closure of D° , we get

$$C \subset D^{\circ} \subset D \subset U$$

(HP)

as desired.

Problem 3.3. Let
$$f = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$$
 be a function $f \colon \mathbb{R} \to \mathbb{R}^2$. Show that f is differentiable at a if and only if f_1 and f_2 both are, and in that case then $D_a f = \begin{pmatrix} D_a f_1 \\ D_a f_2 \end{pmatrix}$.

Solution. First, we must prove that if f is differentiable at a, then f_1 and f_2 are also both differentiable and $D_a f$ is the desired expression. $D_a f$ is just a linear operator, so let's call its linear components $(D_a)_1$ and

 $(D_a)_2$. So f's differentiability and the definition of f yields:

$$\lim_{h \to 0} \frac{||f(a+h) - f(a) - D_a f(h)||}{||h||} = 0$$
$$\lim_{h \to 0} \frac{\left| \left| \begin{array}{c} f_1(a+h) - f_1(a) - (D_a)_1(h) \\ f_2(a+h) - f_2(a) - (D_a)_2(h) \end{array} \right| \right|}{||h||} = 0$$
$$\lim_{h \to 0} \frac{\left| \left| \begin{array}{c} f_1(a+h) - f_1(a) - (D_a)_1(h) \\ f_2(a+h) - f_2(a) - (D_a)_2(h) \end{array} \right| \right|}{||h||} = 0$$

From here, we just work with the norms and redistribute $||h|| = \sqrt{h^2}$ to get

$$\lim_{h \to V} \sqrt{\frac{(f_1(a+h) - f_1(a) - (D_a)_1(h))^2}{h^2} + \frac{(f_2(a+h) - f_2(a) - (D_a)_2(h))^2}{h^2}} = 0$$

Since we have two squared numbers that add to 0, we must have that each individual number is 0, which is only true if

$$\lim_{h \to 0} \frac{f_1(a+h) - f_1(a) - (D_a)_1(h)}{h} = 0$$

meaning that f_1 is differentiable at a, and if

$$\lim_{h \to 0} \frac{f_2(a+h) - f_2(a) - (D_a)_2(h)}{h} = 0$$

meaning that f_2 is also differentiable at a. In addition, these two are just the derivative definitions - by uniqueness of derivatives, we must have that $(D_a)_1$ was indeed $D_a f_1$ and that $(D_a)_2$ was in tact $D_a f_2$. Now, we will prove that if f_1 and f_2 are both differentiable at a and $D_a f$ is the desired expression, then fis differentiable at a. This time, we must prove that

$$\lim_{h \to 0} \frac{||f(a+h) - f(a) - D_a f(h)||}{||h||} = 0$$

Working through the exact same calculations as above, we again arrive at the expression

$$\lim_{h \to 1} \sqrt{\frac{(f_1(a+h) - f_1(a) - (D_a)_1(h))^2}{h^2}} + \frac{(f_2(a+h) - f_2(a) - (D_a)_2(h))^2}{h^2} = 0$$

this time with the hope that the equals sign is true. But the equals sign must hold, since the first term is 0 by f_1 's differentiability and the second term is 0 by f_2 's differentiability. (HP)

4 For submission to Rohil Prasad

Problem 4.1. Show that if A is closed and $[0,1] \cap \mathbb{Q} \subseteq A$, then actually $[0,1] \subseteq A$.

Solution. Assume for the sake of contradiction that there is some irrational $r \in [0, 1]$ which does not lie in A. Since A is closed, the complement of A is open.

Therefore, there exists some $\varepsilon > 0$ such that the interval $(r - \varepsilon, r + \varepsilon)$ does not intersect A. However, for any $\varepsilon > 0$ there is a rational number q in $(r - \varepsilon, r + \varepsilon)$. For small enough ε , we have $(r - \varepsilon, r + \varepsilon) \subset [0, 1]$ so it follows that any open interval around r intersects $[0, 1] \cap \mathbb{Q}$.

As a result, any open interval around r intersects A and we arrive at a contradiction, so r must lie in A. (RP)

Problem 4.2. Let A denote the subset $\{(x, y) \in \mathbb{R}^2 | x > 0, 0 < y < x^2\}$, and let $\chi_A : \mathbb{R}^2 \to \mathbb{R}$ denote the *indicator function*

$$\chi_A(x,y) = \begin{cases} 1 & \text{if } (x,y) \in A, \\ 0 & \text{otherwise.} \end{cases}$$

- 1. Let L be any line through the origin. Show that there is a neighborhood of the origin in L that has no intersection with A.
- 2. For each $h \in \mathbb{R}^2$, let $g_h : \mathbb{R} \to \mathbb{R}^2$ parameterize a line by

$$g_h(t) = h \cdot t$$

Show that $\chi_A \circ g_h$ always defines a continuous function at the origin.

- 3. Nonetheless, show that χ_A is not a continuous function. (Exhibit a continuous curve $\gamma : \mathbb{R} \to \mathbb{R}^2$ with $\gamma(0) = (0,0)$ such that $\chi_A \circ \gamma$ is not a continuous function.)
- Solution. 1. Let L be given by (tx, ty) for $t \in \mathbb{R}$ with either x or y being greater than or equal to zero. It is clear that L does not intersect A for $t \leq 0$, so the problem statement is equivalent to showing that there exists some $\varepsilon > 0$ such that either $tx \leq 0$, $ty \leq 0$, or $ty \geq t^2x^2$ for all $t \in (0, \varepsilon)$.

If either x < 0 or y < 0 then it is clear that tx and ty are respectively negative for all t.

Thus, we have reduced to the case where both x, y are positive. In this case, we have $ty \ge t^2 x^2$ is equivalent to $y/x^2 \ge t$. Therefore, we can pick $\varepsilon = y/x^2$ in this case.

- 2. To show continuity at the origin, we must show for any $\varepsilon > 0$ there exists $\delta > 0$ such that $|t| < \delta$ implies $|(\chi_A \circ g_h)(t)| < \varepsilon$. Since χ_A is either equal to 0 or 1, it suffices to show that there exists $\delta > 0$ such that $|t| < \delta$ implies $(\chi_A \circ g_h)(t) = 0$. The latter statement is equivalent to $g_h(t) \notin A$. Since g_h is a line through the origin, we now have the problem statement is equivalent to showing there is a neighborhood of the origin in g_h that does not intersect A. This is exactly the result of part 1.
- 3. If χ_A were continuous, then since the composition of continuous functions is continuous the function $\chi_A \circ \gamma$ for γ continuous would be continuous as well.

Therefore, showing it is not continuous amounts to showing $\chi_A \circ \gamma$ is not continuous.

We can set γ to send t to $(t,t) \in \mathbb{R}^2$. For $t \in (-\infty, 0]$ it is clear that $\gamma(t) \notin A$. For $t \in (0, 1]$ we have $t \ge t^2$, so we have $\gamma(t) \notin A$ in this case as well. For $t \in (1, \infty)$ we have both that t > 0 and $t < t^2$, so then $\gamma(t) \in A$.

Therefore, $\chi_A \circ \gamma$ is the function that is 0 on $(-\infty, 1]$ and 1 on $(1, \infty)$. It is immediate that it is then discontinuous at 1. (RP)

Problem 4.3. Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrarily differentiable function on the real line, and let $P_{f@a}^{n}(x)$ denote the n^{th} order Taylor polynomial of f:

$$P_{f@a}^{n}(x) = \sum_{j=0}^{n} \frac{f^{(j)}(a) \cdot (x-a)^{j}}{j!}.$$

Show that f and $P_{f@a}^{n}$ agree to n^{th} order a, i.e.,

$$\lim_{h \to 0} \frac{f(a+h) - P_{f@a}^{n}(a+h)}{h^{n}} = 0$$

(Feel free to use tools you know from calculus to evaluate this limit.)

Solution. We will prove this by induction. For n = 0, we have $P_{f@a}^{0}(x) = f(a)$ and the statement is immediate.

Now assume that the statement holds for any smooth function f up to (n-1)th order.

From plugging in h = 0 into the limit, it is clear that both the top and bottom evaluate to 0. Therefore, we can apply L'Hopital's rule to obtain

$$\lim_{h \to 0} \frac{f(a+h) - P_{f@a}^{n}(a+h)}{h^{n}} = \lim_{h \to 0} \frac{f'(a+h) - \sum_{j=1}^{n} \frac{f^{(j)}(a) \cdot h^{j-1}}{(j-1)!}}{nh^{n-1}}$$

However, by definition the latter expression is just equal to $\frac{f'(a+h)-P_{f'@a}^{n-1}(a+h)}{nh^{n-1}}$, which by our inductive assumption equals 0 as desired. (RP)