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1 For submission to Thayer Anderson

Problem 1.1. For x ∈ Rn, write x = x1e1 + · · ·+xnen in some orthonormal basis. Show ||x|| ≤
∑n

j=1 ||xj ||.

Solution. By definition, ||x||2 = 〈x, x〉. Then manipulate as follows:

|x||2 = 〈x, x〉 =

〈
n∑

j=1

||xj ||,
n∑

j=1

||xj ||

〉

=

n∑
j=1

xj

〈
ei,

n∑
j=1

||xj ||

〉

=

n∑
i=1

n∑
j=1

xjxj〈ei, ej〉

=

n∑
i=1

n∑
j=1

xjxjδi(j) =

n∑
j=1

||xj ||2.

And then because a2 + b2 ≤ (a+ b)2 for a, b > 0, the desired result is obtained. (TA)

Problem 1.2. 1. For a linear function f : Rn → Rm, show there exists a real number M such that
||f(v)|| ≤M ||v|| for all v. (Note that M is not allowed to depend on v).

2. Show that a linear function f : Rn → Rm is automatically continuous.

Solution. 1. Fix an orthonormal basis for Rn, e1, . . . , en. Let S = {||f(v)|| : ||v|| = 1}. I claim that S is
bounded. To show this, I exhibit the following bound. Let B = max{||f(e1)||, . . . , ||f(en)||}. As the
maximum of a finite set of numbers, B is exists. Then suppose v = x1e1 + · · · + xnen arbitrary such
that ||v|| = 1. Then

||f(v)|| = ||x1f(e1) + · · ·+ xnf(en)|| ≤
∑
||xi|| ≤ n ·B

by Problem 1. Thus n · B bounds S from above. Then M := sup(S) exists. Take v arbitrary.
Then ||f(v)|| ≤ M ||v||. To see this, suppose the contrary, namely that there exists a vector v with
||f(v)|| > M ||v||. then we see

||f(v/||v||)|| = 1

||v||
||f(v)|| > M · ||v||

||v||
= M

In that case, we see that the vector v/||v|| has norm 1 and ||f(v/||v||)|| exceeds the upper bound M .
This is a contradiction.
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2. To show that f is continuous, we show that it is continuous at every point. Fix a vector v. Suppose
that ε > 0 arbitrary. Let M be as above with respect to the function f . Then take δ = ε/2M . Suppose
that u satisfies d(u, v) < δ. Then

d(f(u), f(v)) = ||f(u)− f(v)|| = ||f(u− v)|| ≤M · ||u− v|| < ε/2

and we are done. (TA)

Problem 1.3. Show that if f : Rn → Rm is differentiable at a, then it is also continuous at a.

Solution. Let f : Rn → Rm be a function differentiable at a. Suppose for the sake of contradiction that f is
not continuous at a. Then there exists some fixed ε0 > 0 such that there does not exist any δ > 0 satisfying
||x − a|| < δ ⇒ ||f(x) − f(a)|| < ε. By differentiability of f at a, there exists a δ0 such that ||x − a|| < δ0
implies

||f(x)− f(a)||
||x− a||

< ε0

(note this is the same ε0 as fixed above.) Then taking δ = min{1, δ0}. We see that ||x − a|| < δ0 implies
that ||f(x)− f(a)|| < ε which is a contradiction. (TA)

2 For submission to Davis Lazowski

Problem 2.1. For any subset A ⊆ Rn which is not closed, show that there exists a continuous function
f : A→ R which is not bounded.

Solution. Then there is a sequence {an}n∈N in A which converges in Rn but does not converge in A. Let
` := limn→∞ an.

Define f` : A→ R as f`(x) := 1
||`−x|| .

Claim. f` is not bounded on A.
If f` were bounded on A, it would be bounded on the sequence an. So there would be some C such that

1

||`− an||
= f`(an) ≤ C <∞

⇐⇒ 0 <
1

C
≤ ||`− an||

Therefore the an cannot converge to `, therefore contradiction.
Claim. f` is continuous.
Importantly, this is with respect to the metric on A: f` isn’t even well defined on Rn.
Let {bn} be a sequence in A which converges to b. Then ||bn|| → ||b||, and by translation invariance

||bn − `|| → ||b− `||. Therefore 1
||bn−`|| →

1
||b−`|| , as desired. (DL)

Problem 2.2. Suppose that A ⊆ Rn is a closed set, that B ⊆ Rn is a compact set, and that A ∩B = ∅.

1. For fixed y ∈ Rn \A, show there exists a real value d > 0 such that for any x ∈ A, ‖x− y‖ ≥ d.

2. Show that every continuous function f : B → R achieves a minimum and maximum value.

3. Show that there exists a real value d > 0 such that for any x ∈ A and y ∈ B, we have ‖x− y‖ ≥ d.

4. Show that parts 2 and 3 both fail in R2 if we merely ask B to be closed but not compact.

Solution. 1. Otherwise, we can find a sequence xn so that ||xn − y|| < 1
n . The sequence xn converges to

y. But A is closed and y 6∈ A, therefore contradiction.
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2. f(B) is compact, so by Heine-Borel is closed and bounded. Its upper bound will be the maximum; its
lower bound will be the minimum.

3. Since B is bounded, there is some closed interval containing it – say [−b, b]. Enlarge this closed interval
to [−b− ε, b+ ε].

Now Ã := A ∩ [−b − ε, b + ε] is a closed and bounded set, so is compact. Ã also includes every point
in A which is in at least ε of B. So if Ã = ∅, take ε := d.

Now we can define a function f : Ã × B → R by f(a, b) = ||a − b||. This function is continuous, and
Ã × B is compact. Therefore f(Ã × B) is compact, so achieves a minimum and maximum. Call this
minimum d. Now d > 0, because for every a the image f(a,B) is compact, so has a minimum `a, with
`a > 0 by part a), so 0 6∈ f(Ã×B).

4. If B is closed, there are counterexamples to 2). For example, take f = id.

There are also counterexamples to 3). Take

A :=
⋃
j∈Z

[j, j +
1

2
]

B :=
⋃

j∈Z,|j|>4

[j +
1

2
+

1

|j|
, j + 0.9]

Then we can find j + 1
2 ∈ A, j + 1

2 + 1
|j| ∈ B, so that the distance between these points is 1

|j| , which

converges to 0 as j →∞. (DL)

Problem 2.3. Suppose that f : Rn → R satisfies |f(x)| ≤ ‖x‖2. Show that f is automatically differentiable
at 0.

Solution. We need to find some D0f such that

f(h) = f(0) +D0f(h) + ε(h)

And

lim
h→0

ε(h)

h
= 0

Suppose such a D0f existed. We have

|ε(h)| = |f(h)− f(0)−D0f(h)|
≤ ||h||2 + |D0f(h)|

So
|ε(h)|
||h||

≤ ||h||+ |D0f(h)|
||h||

If D0f were not zero, then |D0f(h)|
||h|| would not converge to zero. This suggests that we guess D0f = 0.

An alternative motivation for this guess could be: the derivative is supposed to be the linear change at a
given point; but our bound tells us that there is only second order change in f at 0.

Then we can verify

lim
h→0

|f(h)− f(0)|
||h||

= lim
h→0

|f(h)|
||h||

≤ lim
h→0

||h||2

||h||
≤ lim

h→0
||h|| = 0 (DL)
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3 For submission to Handong Park

Problem 3.1. 1. Let F be a family of open sets, possibly infinite in length. Show that the union
⋃

U∈F U
is again an open set.

2. Let U and V be two individual open sets. Show that U ∩ V is again an open set.

3. Show that there exists a family F of open sets such that
⋂

U∈F U is not an open set.

Solution. 1. Call the union M =
⋃

U∈F U . Given any point m in M , we must show that there exists
R > 0 such that BR(m) ∈M . But for any m ∈M , m ∈ U for one of the open sets U ∈ F . Since each
U is open, exists RU such that BRU

(m) ⊂ U is completely contained. Since U ⊂M , BRU
(m) ⊂M is

conpletely contained, and we are done.

2. Given U and V open, and any x ∈ U ∩ V , there exists RU > 0 such that BRU
(x) ⊂ U and RV > 0

such that BRV
(x) ⊂ V . Take the minimum of RU and RV , call this Rmin. Then BRmin(x) ⊂ U and

BRmin(x) ⊂ V , so BRmin(x) ⊂ U ∩ V , showing openness.

3. There are several examples that work. One simple one is to take the set of all (− 1
n ,

1
n ) open intervals

for n ∈ N and intersect them, giving us the closed set [0, 0], which is not open. (HP)

Problem 3.2. Let U 6= ∅ be an open subset of Rn and let C ⊆ U be compact. Show that there exists a
compact set D such that

C ⊆ D◦ ⊆ D ⊆ U,

where D◦ denote the interior of D.

Solution. First off, we know that since U is open, UC ⊂ Rn must be closed. We know that by part 2.2.3 of
this homework, there must exist some d > 0 ∈ R such that given any x ∈ UC and y ∈ C, ||x− y|| ≥ d.
We can then use the fact that C is compact by considering the following open cover of C - for each c ∈ C, take
B0.5(c). Then, the union of all these open balls gives us an open cover of C, since each c ∈ C is contained.
But since C is compact, only a finite subcover is needed - call this finite subcover D◦ = U1, ..., Un, where
each Ui is one of the open balls.
Then consider the cover given by Ū1, ..., Ūn where each Ūi is the closure of the corresponding Ui - this is still
a cover of C since all we’ve done is include more points (namely the boundary of each ball). Call this closed
ball cover D.
D is completely contained in U since these balls have radius d

2 , while the minimum distance between any
point in C and UC is d as stated above. Since D is just the closure of D◦, we get

C ⊂ D◦ ⊂ D ⊂ U

as desired. (HP)

Problem 3.3. Let f =

(
f1
f2

)
be a function f : R→ R2. Show that f is differentiable at a if and only if

f1 and f2 both are, and in that case then Daf =

(
Daf1
Daf2

)
.

Solution. First, we must prove that if f is differentiable at a, then f1 and f2 are also both differentiable and
Daf is the desired expression. Daf is just a linear operator, so let’s call its linear components (Da)1 and
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(Da)2. So f ’s differentiability and the definition of f yields:

lim
h→0

||f(a+ h)− f(a)−Daf(h)||
||h||

= 0

lim
h→0

∣∣∣∣| f1(a+ h)
f2(a+ h)

− f1(a)
f2(a)

− (Da)1(h)
(Da)2(h)

∣∣∣∣ |
||h||

= 0

lim
h→0

∣∣∣∣| f1(a+ h)− f1(a)− (Da)1(h)
f2(a+ h)− f2(a)− (Da)2(h)

∣∣∣∣ |
||h||

= 0

From here, we just work with the norms and redistribute ||h|| =
√
h2 to get

lim
h→

√
(f1(a+ h)− f1(a)− (Da)1(h))2

h2
+

(f2(a+ h)− f2(a)− (Da)2(h))2

h2
= 0

Since we have two squared numbers that add to 0, we must have that each individual number is 0, which is
only true if

lim
h→0

f1(a+ h)− f1(a)− (Da)1(h)

h
= 0

meaning that f1 is differentiable at a, and if

lim
h→0

f2(a+ h)− f2(a)− (Da)2(h)

h
= 0

meaning that f2 is also differentiable at a. In addition, these two are just the derivative definitions - by
uniqueness of derivatives, we must have that (Da)1 was indeed Daf1 and that (Da)2 was in tact Daf2.
Now, we will prove that if f1 and f2 are both differentiable at a and Daf is the desired expression, then f
is differentiable at a. This time, we must prove that

lim
h→0

||f(a+ h)− f(a)−Daf(h)||
||h||

= 0

Working through the exact same calculations as above, we again arrive at the expression

lim
h→

√
(f1(a+ h)− f1(a)− (Da)1(h))2

h2
+

(f2(a+ h)− f2(a)− (Da)2(h))2

h2
= 0

this time with the hope that the equals sign is true. But the equals sign must hold, since the first term is 0
by f1’s differentiability and the second term is 0 by f2’s differentiability. (HP)

4 For submission to Rohil Prasad

Problem 4.1. Show that if A is closed and [0, 1] ∩Q ⊆ A, then actually [0, 1] ⊆ A.

Solution. Assume for the sake of contradiction that there is some irrational r ∈ [0, 1] which does not lie in
A. Since A is closed, the complement of A is open.

Therefore, there exists some ε > 0 such that the interval (r− ε, r+ ε) does not intersect A. However, for
any ε > 0 there is a rational number q in (r− ε, r+ ε). For small enough ε, we have (r− ε, r+ ε) ⊂ [0, 1] so
it follows that any open interval around r intersects [0, 1] ∩Q.

As a result, any open interval around r intersects A and we arrive at a contradiction, so r must lie in
A. (RP)
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Problem 4.2. Let A denote the subset {(x, y) ∈ R2|x > 0, 0 < y < x2}, and let χA : R2 → R denote the
indicator function

χA(x, y) =

{
1 if (x, y) ∈ A,

0 otherwise.

1. Let L be any line through the origin. Show that there is a neighborhood of the origin in L that has
no intersection with A.

2. For each h ∈ R2, let gh : R→ R2 parameterize a line by

gh(t) = h · t

Show that χA ◦ gh always defines a continuous function at the origin.

3. Nonetheless, show that χA is not a continuous function. (Exhibit a continuous curve γ : R→ R2 with
γ(0) = (0, 0) such that χA ◦ γ is not a continuous function.)

Solution. 1. Let L be given by (tx, ty) for t ∈ R with either x or y being greater than or equal to zero. It
is clear that L does not intersect A for t ≤ 0, so the problem statement is equivalent to showing that
there exists some ε > 0 such that either tx ≤ 0, ty ≤ 0, or ty ≥ t2x2 for all t ∈ (0, ε).

If either x < 0 or y < 0 then it is clear that tx and ty are respectively negative for all t.

Thus, we have reduced to the case where both x, y are positive. In this case, we have ty ≥ t2x2 is
equivalent to y/x2 ≥ t. Therefore, we can pick ε = y/x2 in this case.

2. To show continuity at the origin, we must show for any ε > 0 there exists δ > 0 such that |t| < δ
implies |(χA ◦ gh)(t)| < ε. Since χA is either equal to 0 or 1, it suffices to show that there exists δ > 0
such that |t| < δ implies (χA ◦ gh)(t) = 0. The latter statement is equivalent to gh(t) 6∈ A. Since gh
is a line through the origin, we now have the problem statement is equivalent to showing there is a
neighborhood of the origin in gh that does not intersect A. This is exactly the result of part 1.

3. If χA were continuous, then since the composition of continuous functions is continuous the function
χA ◦ γ for γ continuous would be continuous as well.

Therefore, showing it is not continuous amounts to showing χA ◦ γ is not continuous.

We can set γ to send t to (t, t) ∈ R2. For t ∈ (−∞, 0] it is clear that γ(t) 6∈ A. For t ∈ (0, 1] we have
t ≥ t2, so we have γ(t) 6∈ A in this case as well. For t ∈ (1,∞) we have both that t > 0 and t < t2, so
then γ(t) ∈ A.

Therefore, χA ◦ γ is the function that is 0 on (−∞, 1] and 1 on (1,∞). It is immediate that it is then
discontinuous at 1. (RP)

Problem 4.3. Let f : R → R be an arbitrarily differentiable function on the real line, and let Pn
f@a(x)

denote the nth order Taylor polynomial of f :

Pn
f@a(x) =

n∑
j=0

f (j)(a) · (x− a)j

j!
.

Show that f and Pn
f@a agree to nth order a, i.e.,

lim
h→0

f(a+ h)− Pn
f@a(a+ h)

hn
= 0

(Feel free to use tools you know from calculus to evaluate this limit.)
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Solution. We will prove this by induction. For n = 0, we have P 0
f@a(x) = f(a) and the statement is

immediate.
Now assume that the statement holds for any smooth function f up to (n− 1)th order.
From plugging in h = 0 into the limit, it is clear that both the top and bottom evaluate to 0. Therefore,

we can apply L’Hopital’s rule to obtain

lim
h→0

f(a+ h)− Pn
f@a(a+ h)

hn
= lim

h→0

f ′(a+ h)−
∑n

j=1
f(j)(a)·hj−1

(j−1)!

nhn−1

However, by definition the latter expression is just equal to
f ′(a+h)−Pn−1

f′@a
(a+h)

nhn−1 , which by our inductive
assumption equals 0 as desired. (RP)

7


