Homework \#1 Solutions

Thayer Anderson, Davis Lazowski, Handong Park, Rohil Prasad

Eric Peterson

1 For submission to Thayer Anderson

Problem 1.1. For $x \in \mathbb{R}^{n}$, write $x=x_{1} e_{1}+\cdots+x_{n} e_{n}$ in some orthonormal basis. Show $\|x\| \leq \sum_{j=1}^{n}\left\|x_{j}\right\|$. Solution. By definition, $\|x\|^{2}=\langle x, x\rangle$. Then manipulate as follows:

$$
\begin{align*}
\mid x \|^{2} & =\langle x, x\rangle=\left\langle\sum_{j=1}^{n}\left\|x_{j}\right\|, \sum_{j=1}^{n}\left\|x_{j}\right\|\right\rangle \\
& =\sum_{j=1}^{n} x_{j}\left\langle e_{i}, \sum_{j=1}^{n}\left\|x_{j}\right\|\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{j} \overline{x_{j}}\left\langle e_{i}, e_{j}\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{j} \overline{x_{j}} \delta_{i}(j)=\sum_{j=1}^{n}\left\|x_{j}\right\|^{2} . \tag{TA}
\end{align*}
$$

And then because $a^{2}+b^{2} \leq(a+b)^{2}$ for $a, b>0$, the desired result is obtained.
Problem 1.2. 1. For a linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, show there exists a real number M such that $\|f(v)\| \leq M\|v\|$ for all v. (Note that M is not allowed to depend on v).
2. Show that a linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is automatically continuous.

Solution. 1. Fix an orthonormal basis for $\mathbb{R}^{n}, e_{1}, \ldots, e_{n}$. Let $S=\{\|f(v)\|:\|v\|=1\}$. I claim that S is bounded. To show this, I exhibit the following bound. Let $B=\max \left\{\left\|f\left(e_{1}\right)\right\|, \ldots,\left\|f\left(e_{n}\right)\right\|\right\}$. As the maximum of a finite set of numbers, B is exists. Then suppose $v=x_{1} e_{1}+\cdots+x_{n} e_{n}$ arbitrary such that $\|v\|=1$. Then

$$
\|f(v)\|=\left\|x_{1} f\left(e_{1}\right)+\cdots+x_{n} f\left(e_{n}\right)\right\| \leq \sum\left\|x_{i}\right\| \leq n \cdot B
$$

by Problem 1. Thus $n \cdot B$ bounds S from above. Then $M:=\sup (S)$ exists. Take v arbitrary. Then $\|f(v)\| \leq M\|v\|$. To see this, suppose the contrary, namely that there exists a vector v with $\|f(v)\|>M\|v\|$. then we see

$$
\|f(v /\|v\|)\|=\frac{1}{\|v\|}\|f(v)\|>M \cdot \frac{\|v\|}{\|v\|}=M
$$

In that case, we see that the vector $v /\|v\|$ has norm 1 and $\|f(v /\|v\|)\|$ exceeds the upper bound M. This is a contradiction.
2. To show that f is continuous, we show that it is continuous at every point. Fix a vector v. Suppose that $\varepsilon>0$ arbitrary. Let M be as above with respect to the function f. Then take $\delta=\varepsilon / 2 M$. Suppose that u satisfies $d(u, v)<\delta$. Then

$$
\begin{equation*}
d(f(u), f(v))=\|f(u)-f(v)\|=\|f(u-v)\| \leq M \cdot\|u-v\|<\varepsilon / 2 \tag{TA}
\end{equation*}
$$

and we are done.
Problem 1.3. Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at a, then it is also continuous at a.
Solution. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function differentiable at a. Suppose for the sake of contradiction that f is not continuous at a. Then there exists some fixed $\varepsilon_{0}>0$ such that there does not exist any $\delta>0$ satisfying $\|x-a\|<\delta \Rightarrow\|f(x)-f(a)\|<\varepsilon$. By differentiability of f at a, there exists a δ_{0} such that $\|x-a\|<\delta_{0}$ implies

$$
\frac{\|f(x)-f(a)\|}{\|x-a\|}<\varepsilon_{0}
$$

(note this is the same ε_{0} as fixed above.) Then taking $\delta=\min \left\{1, \delta_{0}\right\}$. We see that $\|x-a\|<\delta_{0}$ implies that $\|f(x)-f(a)\|<\varepsilon$ which is a contradiction.

2 For submission to Davis Lazowski

Problem 2.1. For any subset $A \subseteq \mathbb{R}^{n}$ which is not closed, show that there exists a continuous function $f: A \rightarrow \mathbb{R}$ which is not bounded.

Solution. Then there is a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ in A which converges in \mathbb{R}^{n} but does not converge in A. Let $\ell:=\lim _{n \rightarrow \infty} a_{n}$.

Define $f_{\ell}: A \rightarrow \mathbb{R}$ as $f_{\ell}(x):=\frac{1}{\|\ell-x\|}$.
Claim. f_{ℓ} is not bounded on A.
If f_{ℓ} were bounded on A, it would be bounded on the sequence a_{n}. So there would be some C such that

$$
\begin{array}{r}
\frac{1}{\left\|\ell-a_{n}\right\|}=f_{\ell}\left(a_{n}\right) \leq C<\infty \\
\Longleftrightarrow 0<\frac{1}{C} \leq\left\|\ell-a_{n}\right\|
\end{array}
$$

Therefore the a_{n} cannot converge to ℓ, therefore contradiction.
Claim. f_{ℓ} is continuous.
Importantly, this is with respect to the metric on $A: f_{\ell}$ isn't even well defined on \mathbb{R}^{n}.
Let $\left\{b_{n}\right\}$ be a sequence in A which converges to b. Then $\left\|b_{n}\right\| \rightarrow\|b\|$, and by translation invariance $\left\|b_{n}-\ell\right\| \rightarrow\|b-\ell\|$. Therefore $\frac{1}{\left\|b_{n}-\ell\right\|} \rightarrow \frac{1}{\|b-\ell\|}$, as desired.

Problem 2.2. Suppose that $A \subseteq \mathbb{R}^{n}$ is a closed set, that $B \subseteq \mathbb{R}^{n}$ is a compact set, and that $A \cap B=\emptyset$.

1. For fixed $y \in \mathbb{R}^{n} \backslash A$, show there exists a real value $d>0$ such that for any $x \in A,\|x-y\| \geq d$.
2. Show that every continuous function $f: B \rightarrow \mathbb{R}$ achieves a minimum and maximum value.
3. Show that there exists a real value $d>0$ such that for any $x \in A$ and $y \in B$, we have $\|x-y\| \geq d$.
4. Show that parts 2 and 3 both fail in \mathbb{R}^{2} if we merely ask B to be closed but not compact.

Solution. 1. Otherwise, we can find a sequence x_{n} so that $\left\|x_{n}-y\right\|<\frac{1}{n}$. The sequence x_{n} converges to y. But A is closed and $y \notin A$, therefore contradiction.
2. $f(B)$ is compact, so by Heine-Borel is closed and bounded. Its upper bound will be the maximum; its lower bound will be the minimum.
3. Since B is bounded, there is some closed interval containing it - say $[-b, b]$. Enlarge this closed interval to $[-b-\varepsilon, b+\varepsilon]$.
Now $\tilde{A}:=A \cap[-b-\varepsilon, b+\varepsilon]$ is a closed and bounded set, so is compact. \tilde{A} also includes every point in A which is in at least ε of B. So if $\tilde{A}=\emptyset$, take $\varepsilon:=d$.
Now we can define a function $f: \tilde{\sim} \tilde{A} \times B \rightarrow \mathbb{R}$ by $f(a, b)=\|a-b\|$. This function is continuous, and $\tilde{A} \times B$ is compact. Therefore $f(\tilde{A} \times B)$ is compact, so achieves a minimum and maximum. Call this minimum d. Now $d>0$, because for every a the image $f(a, B)$ is compact, so has a minimum ℓ_{a}, with $\ell_{a}>0$ by part a), so $0 \notin f(\tilde{A} \times B)$.
4. If B is closed, there are counterexamples to 2). For example, take $f=\mathrm{id}$.

There are also counterexamples to 3). Take

$$
\begin{array}{r}
A:=\bigcup_{j \in \mathbb{Z}}\left[j, j+\frac{1}{2}\right] \\
B:=\bigcup_{j \in \mathbb{Z},|j|>4}\left[j+\frac{1}{2}+\frac{1}{|j|}, j+0.9\right]
\end{array}
$$

Then we can find $j+\frac{1}{2} \in A, j+\frac{1}{2}+\frac{1}{|j|} \in B$, so that the distance between these points is $\frac{1}{|j|}$, which converges to 0 as $j \rightarrow \infty$.

Problem 2.3. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies $|f(x)| \leq\|x\|^{2}$. Show that f is automatically differentiable at 0 .

Solution. We need to find some $D_{0} f$ such that

$$
f(h)=f(0)+D_{0} f(h)+\varepsilon(h)
$$

And

$$
\lim _{h \rightarrow 0} \frac{\varepsilon(h)}{h}=0
$$

Suppose such a $D_{0} f$ existed. We have

$$
\begin{array}{r}
|\varepsilon(h)|=\left|f(h)-f(0)-D_{0} f(h)\right| \\
\leq\|h\|^{2}+\left|D_{0} f(h)\right|
\end{array}
$$

So

$$
\frac{|\varepsilon(h)|}{\|h\|} \leq\|h\|+\frac{\left|D_{0} f(h)\right|}{\|h\|}
$$

If $D_{0} f$ were not zero, then $\frac{\left|D_{0} f(h)\right|}{\|h\|}$ would not converge to zero. This suggests that we guess $D_{0} f=0$. An alternative motivation for this guess could be: the derivative is supposed to be the linear change at a given point; but our bound tells us that there is only second order change in f at 0 .

Then we can verify

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{|f(h)-f(0)|}{\|h\|}=\lim _{h \rightarrow 0} \frac{|f(h)|}{\|h\|} \leq \lim _{h \rightarrow 0} \frac{\|h\|^{2}}{\|h\|} \leq \lim _{h \rightarrow 0}\|h\|=0 \tag{DL}
\end{equation*}
$$

3 For submission to Handong Park

Problem 3.1. 1. Let \mathcal{F} be a family of open sets, possibly infinite in length. Show that the union $\bigcup_{U \in \mathcal{F}} U$ is again an open set.
2. Let U and V be two individual open sets. Show that $U \cap V$ is again an open set.
3. Show that there exists a family \mathcal{F} of open sets such that $\bigcap_{U \in \mathcal{F}} U$ is not an open set.

Solution. 1. Call the union $M=\bigcup_{U \in \mathcal{F}} U$. Given any point m in M, we must show that there exists $R>0$ such that $B_{R}(m) \in M$. But for any $m \in M, m \in U$ for one of the open sets $U \in F$. Since each U is open, exists R_{U} such that $B_{R_{U}}(m) \subset U$ is completely contained. Since $U \subset M, B_{R_{U}}(m) \subset M$ is conpletely contained, and we are done.
2. Given U and V open, and any $x \in U \cap V$, there exists $R_{U}>0$ such that $B_{R_{U}}(x) \subset U$ and $R_{V}>0$ such that $B_{R_{V}}(x) \subset V$. Take the minimum of R_{U} and R_{V}, call this $R_{m i n}$. Then $B_{R_{m i n}}(x) \subset U$ and $B_{R_{\text {min }}}(x) \subset V$, so $B_{R_{m i n}}(x) \subset U \cap V$, showing openness.
3. There are several examples that work. One simple one is to take the set of all $\left(-\frac{1}{n}, \frac{1}{n}\right)$ open intervals for $n \in \mathbb{N}$ and intersect them, giving us the closed set $[0,0]$, which is not open.

Problem 3.2. Let $U \neq \emptyset$ be an open subset of \mathbb{R}^{n} and let $C \subseteq U$ be compact. Show that there exists a compact set D such that

$$
C \subseteq D^{\circ} \subseteq D \subseteq U
$$

where D° denote the interior of D.
Solution. First off, we know that since U is open, $U^{C} \subset \mathbb{R}^{n}$ must be closed. We know that by part 2.2.3 of this homework, there must exist some $d>0 \in \mathbb{R}$ such that given any $x \in U^{C}$ and $y \in C,\|x-y\| \geq d$.
We can then use the fact that C is compact by considering the following open cover of C - for each $c \in C$, take $B_{0.5}(c)$. Then, the union of all these open balls gives us an open cover of C, since each $c \in C$ is contained. But since C is compact, only a finite subcover is needed - call this finite subcover $D^{\circ}=U_{1}, \ldots, U_{n}$, where each U_{i} is one of the open balls.
Then consider the cover given by $\bar{U}_{1}, \ldots, \bar{U}_{n}$ where each \bar{U}_{i} is the closure of the corresponding U_{i} - this is still a cover of C since all we've done is include more points (namely the boundary of each ball). Call this closed ball cover D.
D is completely contained in U since these balls have radius $\frac{d}{2}$, while the minimum distance between any point in C and U^{C} is d as stated above. Since D is just the closure of D°, we get

$$
\begin{equation*}
C \subset D^{\circ} \subset D \subset U \tag{HP}
\end{equation*}
$$

as desired.
Problem 3.3. Let $f=\binom{f_{1}}{f_{2}}$ be a function $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$. Show that f is differentiable at a if and only if f_{1} and f_{2} both are, and in that case then $D_{a} f=\binom{D_{a} f_{1}}{D_{a} f_{2}}$.

Solution. First, we must prove that if f is differentiable at a, then f_{1} and f_{2} are also both differentiable and $D_{a} f$ is the desired expression. $D_{a} f$ is just a linear operator, so let's call its linear components $\left(D_{a}\right)_{1}$ and
$\left(D_{a}\right)_{2}$. So f 's differentiability and the definition of f yields:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\left\|f(a+h)-f(a)-D_{a} f(h)\right\|}{\|h\|} & =0 \\
\lim _{h \rightarrow 0} \frac{\left.\left|\begin{array}{l}
f_{1}(a+h) \\
f_{2}(a+h)
\end{array} \frac{f_{1}(a)}{f_{2}(a)}-\begin{array}{c}
\left(D_{a}\right)_{1}(h) \\
f_{1}\left(D_{a}\right)_{2}(h)
\end{array}\right| \right\rvert\,}{\|h\|} & =0 \\
\lim _{h \rightarrow 0} \frac{\left.\left|\begin{array}{l}
f_{1}(a+h)-f_{1}(a)-\left(D_{a}\right)_{1}(h) \\
f_{2}(a+h)-f_{2}(a)-\left(D_{a}\right)_{2}(h)
\end{array}\right| \right\rvert\,}{\|h\|} & =0
\end{aligned}
$$

From here, we just work with the norms and redistribute $\|h\|=\sqrt{h^{2}}$ to get

$$
\lim _{h \rightarrow} \sqrt{\frac{\left(f_{1}(a+h)-f_{1}(a)-\left(D_{a}\right)_{1}(h)\right)^{2}}{h^{2}}+\frac{\left(f_{2}(a+h)-f_{2}(a)-\left(D_{a}\right)_{2}(h)\right)^{2}}{h^{2}}}=0
$$

Since we have two squared numbers that add to 0 , we must have that each individual number is 0 , which is only true if

$$
\lim _{h \rightarrow 0} \frac{f_{1}(a+h)-f_{1}(a)-\left(D_{a}\right)_{1}(h)}{h}=0
$$

meaning that f_{1} is differentiable at a, and if

$$
\lim _{h \rightarrow 0} \frac{f_{2}(a+h)-f_{2}(a)-\left(D_{a}\right)_{2}(h)}{h}=0
$$

meaning that f_{2} is also differentiable at a. In addition, these two are just the derivative definitions - by uniqueness of derivatives, we must have that $\left(D_{a}\right)_{1}$ was indeed $D_{a} f_{1}$ and that $\left(D_{a}\right)_{2}$ was in tact $D_{a} f_{2}$.
Now, we will prove that if f_{1} and f_{2} are both differentiable at a and $D_{a} f$ is the desired expression, then f is differentiable at a. This time, we must prove that

$$
\lim _{h \rightarrow 0} \frac{\left\|f(a+h)-f(a)-D_{a} f(h)\right\|}{\|h\|}=0
$$

Working through the exact same calculations as above, we again arrive at the expression

$$
\lim _{h \rightarrow} \sqrt{\frac{\left(f_{1}(a+h)-f_{1}(a)-\left(D_{a}\right)_{1}(h)\right)^{2}}{h^{2}}+\frac{\left(f_{2}(a+h)-f_{2}(a)-\left(D_{a}\right)_{2}(h)\right)^{2}}{h^{2}}}=0
$$

this time with the hope that the equals sign is true. But the equals sign must hold, since the first term is 0 by f_{1} 's differentiability and the second term is 0 by f_{2} 's differentiability.

4 For submission to Rohil Prasad

Problem 4.1. Show that if A is closed and $[0,1] \cap \mathbb{Q} \subseteq A$, then actually $[0,1] \subseteq A$.
Solution. Assume for the sake of contradiction that there is some irrational $r \in[0,1]$ which does not lie in A. Since A is closed, the complement of A is open.

Therefore, there exists some $\varepsilon>0$ such that the interval $(r-\varepsilon, r+\varepsilon)$ does not intersect A. However, for any $\varepsilon>0$ there is a rational number q in $(r-\varepsilon, r+\varepsilon)$. For small enough ε, we have $(r-\varepsilon, r+\varepsilon) \subset[0,1]$ so it follows that any open interval around r intersects $[0,1] \cap \mathbb{Q}$.

As a result, any open interval around r intersects A and we arrive at a contradiction, so r must lie in A.
(RP)

Problem 4.2. Let A denote the subset $\left\{(x, y) \in \mathbb{R}^{2} \mid x>0,0<y<x^{2}\right\}$, and let $\chi_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ denote the indicator function

$$
\chi_{A}(x, y)= \begin{cases}1 & \text { if }(x, y) \in A \\ 0 & \text { otherwise }\end{cases}
$$

1. Let L be any line through the origin. Show that there is a neighborhood of the origin in L that has no intersection with A.
2. For each $h \in \mathbb{R}^{2}$, let $g_{h}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ parameterize a line by

$$
g_{h}(t)=h \cdot t
$$

Show that $\chi_{A} \circ g_{h}$ always defines a continuous function at the origin.
3. Nonetheless, show that χ_{A} is not a continuous function. (Exhibit a continuous curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ with $\gamma(0)=(0,0)$ such that $\chi_{A} \circ \gamma$ is not a continuous function.)

Solution. 1. Let L be given by $(t x, t y)$ for $t \in \mathbb{R}$ with either x or y being greater than or equal to zero. It is clear that L does not intersect A for $t \leq 0$, so the problem statement is equivalent to showing that there exists some $\varepsilon>0$ such that either $t x \leq 0$, ty ≤ 0, or $t y \geq t^{2} x^{2}$ for all $t \in(0, \varepsilon)$.

If either $x<0$ or $y<0$ then it is clear that $t x$ and $t y$ are respectively negative for all t.
Thus, we have reduced to the case where both x, y are positive. In this case, we have $t y \geq t^{2} x^{2}$ is equivalent to $y / x^{2} \geq t$. Therefore, we can pick $\varepsilon=y / x^{2}$ in this case.
2. To show continuity at the origin, we must show for any $\varepsilon>0$ there exists $\delta>0$ such that $|t|<\delta$ implies $\left|\left(\chi_{A} \circ g_{h}\right)(t)\right|<\varepsilon$. Since χ_{A} is either equal to 0 or 1 , it suffices to show that there exists $\delta>0$ such that $|t|<\delta$ implies $\left(\chi_{A} \circ g_{h}\right)(t)=0$. The latter statement is equivalent to $g_{h}(t) \notin A$. Since g_{h} is a line through the origin, we now have the problem statement is equivalent to showing there is a neighborhood of the origin in g_{h} that does not intersect A. This is exactly the result of part 1 .
3. If χ_{A} were continuous, then since the composition of continuous functions is continuous the function $\chi_{A} \circ \gamma$ for γ continuous would be continuous as well.

Therefore, showing it is not continuous amounts to showing $\chi_{A} \circ \gamma$ is not continuous.
We can set γ to send t to $(t, t) \in \mathbb{R}^{2}$. For $t \in(-\infty, 0]$ it is clear that $\gamma(t) \notin A$. For $t \in(0,1]$ we have $t \geq t^{2}$, so we have $\gamma(t) \notin A$ in this case as well. For $t \in(1, \infty)$ we have both that $t>0$ and $t<t^{2}$, so then $\gamma(t) \in A$.
Therefore, $\chi_{A} \circ \gamma$ is the function that is 0 on $(-\infty, 1]$ and 1 on $(1, \infty)$. It is immediate that it is then discontinuous at 1 .

Problem 4.3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an arbitrarily differentiable function on the real line, and let $P_{f @ a}^{n}(x)$ denote the $n^{\text {th }}$ order Taylor polynomial of f :

$$
P_{f @ a}^{n}(x)=\sum_{j=0}^{n} \frac{f^{(j)}(a) \cdot(x-a)^{j}}{j!}
$$

Show that f and $P_{f @ a}^{n}$ agree to $n^{\text {th }}$ order a, i.e.,

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-P_{f @ a}^{n}(a+h)}{h^{n}}=0
$$

(Feel free to use tools you know from calculus to evaluate this limit.)

Solution. We will prove this by induction. For $n=0$, we have $P_{f @ a}^{0}(x)=f(a)$ and the statement is immediate.

Now assume that the statement holds for any smooth function f up to $(n-1)$ th order.
From plugging in $h=0$ into the limit, it is clear that both the top and bottom evaluate to 0 . Therefore, we can apply L'Hopital's rule to obtain

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-P_{f @ a}^{n}(a+h)}{h^{n}}=\lim _{h \rightarrow 0} \frac{f^{\prime}(a+h)-\sum_{j=1}^{n} \frac{f^{(j)}(a) \cdot h^{j-1}}{(j-1)!}}{n h^{n-1}}
$$

However, by definition the latter expression is just equal to $\frac{f^{\prime}(a+h)-P_{f}^{n-1}(a+h)}{n h^{n-1}}$, which by our inductive assumption equals 0 as desired.
(RP)

