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1. Why model categories?

1.1. Localizing categories. Let C be a category and W ⊆ Mor(C) a collection of morphisms, which we
think of as (weak) equivalences. Often, one wants to treat the morphisms in W as isomorphisms. An
example is the homotopy category of spaces Ho(Spaces∗/): we have C = Spaces∗/ and W the collection
of homotopy equivalences.

There is a general way, called Gabriel-Zisman localization, to form a new category C[W−1] where the
equivalences are “formally inverted”. Roughly speaking, C[W−1] has

• objects the same as C, and
• a morphism x→ y in C[W−1] is a zig-zag of arrows

x→ • ∼←− • → · · · → • ∼←− • → y

in C, where the backward arrows belong to W, modulo the obvious relations.

However, there is a problem with this construction. Namely, it may be “too large” to even be a category
(at least not a locally small one). Even if you sweep these set-theoretic issues under the rug, there is still
the problem of not having a good handle on the morphisms in C[W−1]. The situation is slightly better if
we have a calculus of fractions.

The theory of model categories furnishes another possible solution to this problem. By equipping the
category with weak equivalences (C,W) with additional structure, one can construct its homotopy category,
which I’ll eventually denote Ho(C), which can be shown to be a localization of C with respect to W, i.e.,
Ho(C) and C[W−1] are equivalent as categories. Furthermore, there is a more manageable description of
the morphisms in Ho(C), amenable to calculation.

But it’s important to keep in mind that what’s actually important is the underlying category with weak
equivalences (C,W) – the other structures ought to be dispensable. One way to see this is to note that
there is a less näıve localization, called hammock localization1 ([DK80a], [DK80b]), intermediate between the
model category C and its homotopy category Ho(C). This is a universal simplicial category LHC in which
morphisms in W are invertible. In particular, regarding C[W−1] as a discrete simplicial category, we have
the picture

C→ LHC→ C[W−1].

Date: February 15, 2017.
1Possible paper topic #11.
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The map on mapping spaces in LHC→ C[W−1] is given by projection to path components. Philosophically,
the problem with C[W−1] is that it has forgotten too much structure. Another lesson we may draw from
this is that localization of categories is inherently homotopical.

So what is this hammock localization? LHC is the simplicially enriched category whose

• objects are the same as C
• the 0-simplices in LHC(x, y) are just the zigzags from above,
• the 1-simplices are “hammocks”:

• • · · · • •

x y

• • · · · • •

∼

∼

∼ ∼

∼

∼

∼ ∼

• the n-simplices are “wider hammocks” of width n. In other words, LHC(x, y) is the nerve of the
category of zigzags from x to y with weak equivalences of zigzags, modulo some relations.

Hammock localization behaves well with model categories. For instance, let C be a simplicial model
category, and C0 its underlying category. Then C ' LH(C0) as simplicial categories.

1.2. Derived functors. Let F : C→ D be a functor between categories with weak equivalences. A (total)
derived functor F ′ of F is a universal functor in the diagram

C D Ho(D)

Ho(C)

F

F ′

If F is homotopical – it takes weak equivalences in C to weak equivalences in D – then F ′ would be
easy to define, but most functors are not homotopical. The derived functor F ′ is then a best homotopical
approximation to F .

In general, when do derived functors exist and how are they defined? Again, category theory has an
all-purpose solution to these kinds of questions: Kan extensions. However, there are problems with this
näıve answer: functors produced in this fashion are not typically pointwise Kan extensions since Ho(D) may
lack limits and colimits, so for example the composite of two derived functors is not necessarily the derived
functor of the composite.

Model categories allows one to restrict attention to nicely behaved functors that do not suffer from such
defects.

Remark 1.1. Again, a full model structure is not required for the construction of derived functors. In
[DHKS04], the authors develop the notion of a homotopical category and deformable functors, which is
sufficient. Another alternative is to work in the framework of the Dwyer-Kan simplicial localization.

1.3. Abstract homotopy theory. By “homotopy theory”, one usually means the homotopy theory of
topological spaces. We study homotopy equivalences, fibrations, and cofibrations of spaces and how they
interact in homotopically meaningful ways. In the 1960s, Quillen observed that one can do “homotopy
theory” in other settings. In fact, the theory of model categories is modelled heavily on the theory of
homological algebra, where one does “homotopy theory” with chain complexes up to quasi-isomorphisms.
Quillen also wrote down the main features of this “homotopical algebra” – a theory of homotopy theory, if
you will. Constructions and theorems that can be proven in this framework will apply to all these diverse
situations.

Our goal in this note will be modest2. We’ll define what a model category is, carefully construct the
homotopy category Ho(C) of a model category C, and discuss derived functors and hopefully also homotopy
limits and colimits.

2In retrospect, not so much.
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1.4. (∞, 1)-categories. Granting that model categories is supposed to provide a “theory of homotopy the-
ories”, what about a “homotopy theory of homotopy theories”? One way to formulate this question is to ask
whether there is a model category of model categories in which the weak equivalences are, say, the Quillen
equivalences (defined later). As far as I know, this has not been fully worked out. Instead, one solution is
to use the theory of (∞, 1)-categories3, aka ∞-categories or quasicategories, developed by Joyal and Lurie.
There is an ∞-category of ∞-categories, which is nice for example if we want to take (homotopy) limits of
categories.

Many ∞-categories come to us from model categories. For example, the coherent nerve of a locally
fibrant simplicial model category (which one can obtain via simplicial localization and fibrant replacement)
is a ∞-category. Call an ∞-category presentable if it is cocomplete and accessible. Then an ∞-category
is presentable if and only if it is equivalent to the underlying ∞-category of some combinatorial simplicial
model category. In layman’s terms, model categories gives us a way to present ∞-categories, analogous to
how generators and relations are used to present groups.

For more information, see [Lur09].

1.5. References. The original source for this material is Quillen’s Homotopical algebra [Qui67], which is
still useful to read not only for cultural edification. I will closely follow the excellent introductory article
[DS95]. While preparing this, I also benefited from reading some of Emily Riehl’s writings, e.g., [Rie14].
Other more comprehensive treatments of model categories can be found in [Hir03] (read part two first) and
[Hov99].

2. Definitions, examples, and basic properties

Definition 2.1 (Lifting properties). Consider a diagram of the shape

• •

• •
i p

If the dotted arrow exists (for arbitrary horizontal arrows), we say that i has the left lifting property with
respect to p. Dually, we also say that p has the right lifting property with respect to i.

Definition 2.2. A (closed) model category is a category C with three distinguished wide subcategories:

(i) weak equivalences W, whose morphisms will be denoted (
∼−→);

(ii) fibrations fib, whose morphisms will be denoted (�); and
(iii) cofibrations cof , whose morphisms with be denoted (�);

satisfying the following axioms:

(MC1) C is bicomplete.
(MC2) Weak equivalences satisfy the 2-out-of-3 property.
(MC3) Weak equivalences, fibrations, and cofibrations are closed under retracts.
(MC4) • Cofibrations have the left lifting property with respect to acyclic fibrations.

• Fibrations have the right lifting property with respect to acyclic cofibrations.
(MC5) Any map f can be functorially factored in two ways:

• as a cofibration followed by an acyclic fibration, or
• as an acyclic cofibration followed by a fibration.

The last two axioms say that (cof ,W ∩ fib) and (W ∩ cof ,fib) form weak factorization systems.

Remark 2.3. These axioms can be weakened. For example, Quillen’s original definition only asked for finite
limits and colimits, and factorizations need not be functorial. However, we’ll often want more limits and
colimits for Quillen’s small object argument, which produces functorial factorizations automatically anyway.

Remark 2.4. The definition of a model category is dual: if (C,W,fib, cof) is a model category, then so is
(Cop,Wop, cofop,fibop). Upshot: every time we prove a statement we automatically get a dual statement
for free.

3Possible paper topic # 10.
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Definition 2.5. A model category C has an initial object ∅ and a terminal object ∗. An object A in C is

(i) cofibrant, if the map ∅ → A is a cofibration; and
(ii) fibrant, if the map A→ ∗ is a fibration.

Examples 2.6.

(a) The category Spaces of topological spaces is a model category where a map is
(i) a weak equivalence if it is a weak homotopy equivalence,
(ii) a fibration if it is a Serre fibration4,

(iii) a cofibration if it is a retract of a cell complex, i.e., a map obtained by successively attaching cells.
Every object is fibrant, and the cofibrant objects are retracts of “generalized CW complexes”.

(b) There is another model structure on Spaces where the weak equivalences are homotopy equivalences
(recall for maps between non-CW complexes, Whitehead’s theorem need not hold). The fibrations are
Hurewicz fibrations, and the cofibrations are closed Hurewicz cofibrations, i.e., maps A → B with the
homotopy extension property in which A ⊆ B is a closed subspace. See [Str72].

(c) The category ChR of nonnegatively graded chain complexes over R is a model category where a chain
map is

(i) a weak equivalence if it is a quasi-isomorphism,
(ii) a cofibration if it is a degree-wise monomorphism with projective cokernel in all nonnegative degrees,

and
(iii) a fibration if it is a degree-wise epimorphism in positive degrees.
This is called the projective model structure.

There are several other model structures one may put on ChR. For example, call a chain map
(i) a weak equivalence if it is a quasi-isomorphism,

(ii) a cofibration if it is a degree-wise monomorphism in positive degrees, and
(iii) a fibration if it is a degree-wise epimorphism with injective kernel in all nonnegative degrees.
This forms the injective model structure on ChR.

(d) Simplicial sets5 also form a model category. Call a map f
(i) a weak equivalence if it is a weak homotopy equivalence after geometric realization,

(ii) a cofibration is it is a levelwise injection, and
(iii) a fibration if it is a Kan fibration, i.e., maps with the rlp against all horn inclusions.

In this Quillen/Kan model structure, every simplicial set is cofibrant and the fibrant objects are Kan
complexes.

Alternatively, call f
(i) a weak equivalence if it is a weak categorical equivalence,

(ii) a cofibration if it is a levelwise injection, and
(iii) a fibration if it is an “inner Kan fibration”, i.e., maps with the rlp against inner horn inclusions.

In this Joyal model structure, every object is cofibrant and the fibrant objects are ∞-categories.
(e) Simplicial objects in abelian categories. See [Qui67].

Exercise 2.7. Check that these do form model categories. Some of the axioms should be familiar, while
others require some work.6

Let I ⊂ Mor(C) and f ∈ Mor(C). We write

• f ∈ llp(I) if f has the left lifting property with respect to all morphisms in I, and
• dually, f ∈ rlp(I) if f has the right lifting property with respect to all morphisms in I.

Proposition 2.8. Let C be a model category. Then

(i) cof = llp(W ∩ fib).
(ii) W ∩ cof = llp(fib).

(iii) fib = rlp(W ∩ cof).
(iv) W ∩ fib = rlp(cof).

4Eric calls these “weak fibrations” to distinguish them from what I call Hurewicz fibrations below.
5Possible paper topic # 14.
6See some of the problems on the problem set.
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Proof of (i). We’ll give a proof of (i); (ii) is similar and the others follow from duality.

Given f : X ∈ Y with the llp against acyclic fibrations, factor it as f : X
i
� Y ′

∼
� Y . There is a lift

Y → Y ′ in the diagram

X Y ′

Y Y,

i

f ∼

which realizes f as a retract of the cofibration i. So f is a cofibration. �

This means that given the weak equivalences, cofibrations determine the fibrations and vice-versa.

Proposition 2.9. Let C be a model category. Then cof and W ∩ cof are stable under cobase change, and
fib and W ∩ fib are stable under base change.

Proof. Easy exercise using the previous proposition. �

3. Homotopy relations

Fix a model category C.

Definition 3.1. Let A be an object in C. A (good) cylinder object for A is an object cyl(A) in C together
with a factorization

A tA
i
� cyl(A)

∼−→ A

of the fold map ∇ : A tA→ A.

Two maps f, g : A→ X in C are said to be left homotopic, written f
l∼ g, if there exists a cylinder object

cyl(A) for A so that the sum map f t g : A tA→ X extends to a map H : cyl(A)→ X.

Remark 3.2. We are adopting Hovey’s requirement that a cylinder object be good. In [DS95], the map
i : A tA→ cyl(A) is not assumed to be a cofibration.

Example 3.3. In Spaces, A×I is a cylinder object for A if A is cofibrant, hence the name. (The assumption
that A is cofibrant is so that A t A = A × ∂I ↪→ A × I is a cofibration, otherwise the cylinder object isn’t
good.)

Lemma 3.4. If A is cofibrant, the maps i0, i1 : A→ cyl(A) are acyclic cofibrations.

Proof. Since composing with cyl(A)
∼−→ A gives the identity which is a weak equivalence, the 2-of-3 property

implies i0 and i1 are weak equivalences. Now, if A is cofibrant, we obtain in0 and in1 as pushouts of a
cofibration

∅ A

A A tA

in0

in1

so they’re cofibrations too. Now, i0 is the composition of two cofibrations

i0 : A
in0

� A tA� cyl(A)

so it’s a cofibration too. Similar for i1. �

Proposition 3.5. If A is cofibrant, then
l∼ is an equivalence relation on C(A,X).

Proof. Reflexivity and symmetry are obvious. For transitivity, suppose f
l∼ g and g

l∼ h, and choose good
left homotopies H : cyl(A)→ X from f to g and H ′ : cyl(A)′ → X from g to h.

We’ll define a new object C by pushing out:
5



A

A cyl(A)

A cyl(A)′ C

A

i0

j0
i1
∼

∼i′0

p
∼

∼i′1

j1

∼

∼

Since A is cofibrant, i0, etc. are all acyclic cofibrations. By stability under cobase change, cyl(A) → C
are acyclic cofibrations. Since additionally cyl(A)→ A is a weak equivalence, we deduce that C → A is also
a weak equivalence by the 2-of-3 property.

It might bother you that the map j0 t j1 : A t A→ C is not a cofibration. This is not an issue since we
can just factor this as a cofibration followed by a acyclic fibration:

A tA� cyl(A)′′
∼
� C.

(This is why we can concern ourselves with just good cylinder objects, rather than all cylinder objects.)
Finally, by the universal property of a pushout there is a map H ′′ : C → X, which is a left homotopy

from f to h.

A cyl(A)

cyl(A)′′ C X

A cyl(A)′

i0
∼

∼

f

∼ H

∼ H′′

i′1

∼

∼

h

∼
H′

�

Let πl(A,X) denote the set of equivalence classes of C(A,X) under the equivalence relation generated by
left homotopy.

Lemma 3.6. If X is fibrant, f
l∼ g : A→ X, and h : A′ → A, then fh

l∼ gh.

Proof. Let H : cyl(A)→ X be a left homotopy from f to g. We can assume the structure map cyl(A)
∼−→ A

is not only a weak equivalence but an acyclic fibration. (This is what it means to be a very good cylinder
object in [DS95].) To see this, factor the map into an acylic cofibration followed by a (necessarily acyclic,
by 2-of-3) fibration:

cyl(A)
∼
� cyl(A)′

∼
� A.

Then since X is fibrant, we can extend H over cyl(A)′:

cyl(A) X

cyl(A)′ ∗.

H

∼

6



Now let

A′ tA′� cyl(A′)
∼−→ A′

be a cylinder object for A′. Construct a lift of the following diagram

A′ tA′ A tA cyl(A)

cyl(A′) A′ A

hth

∼

∼

k

h

Then Hk is a left homotopy from fh to gh:

A′ A

cyl(A′) cyl(A) X

A′ A

h

f

k H

h

g

�

Corollary 3.7. If X is fibrant, then the composition in C induces a well-defined map

πl(A′, A)× πl(A,X)→ πl(A′, X).

Proof. We need to show that if h
l∼ k : A′ → A and f

l∼ g : A → X, then fh and gk represent the same

element of πl(A′, X). We showed in the previous lemma that fh
l∼ gh. So it remains to show that gh

l∼ gk.
This is easier: just compose the homotopy between h and k with g. �

By duality, one can formulate the notion of path objects factoring the diagonal map and right homotopies
and prove dual lemmas.

Definition 3.8. A (good) path object for X is an object cocyl(X) with a factorization

X
∼−→ cocyl(X)

p−→ X ×X

of the diagonal map ∆ : X → X ×X.

Two maps f, g : A → X are right homotopic, written f
r−→ g if there is a path object cocyl(X) such that

the product map f × g : A→ X ×X lifts to a map H : A→ cocyl(X).

Example 3.9. The path space XI is a path object for X in Spaces.

The relationship between left and right homotopy is given by:

Lemma 3.10. Let f, g : A→ X be maps.

(a) If A is cofibrant and f
l∼ g, then f

r∼ g.

(b) If X is fibrant and f
r∼ g, then f

l∼ g.

Proof of (a). Let H : cyl(A)→ X be a left homotopy from f to g. Denote by j the structure map cyl(A)→
A. Since A is cofibrant, we’ve seen that i0 : A → cyl(A) is an acyclic cofibration. Put this together in the
diagram

A X cocyl(X)

cyl(A) X ×X

f

i0 ∼

(fj,H)

K

Then Ki1 : A→ cocyl(X) is the desired right homotopy. �
7



If A is cofibrant and X is fibrant, we’ll denote the coincident equivalence relation by ∼ and say that two
equivalent maps are homotopic. The set of equivalence classes is denoted by π(A,X).

We end this section with an application from topology.

Theorem 3.11 (Whitehead). Let f : A → X be a map between bifibrant objects. Then f is a weak
equivalence iff it is a homotopy equivalence.

Lemma 3.12. If A is cofibrant and p : Y → X is an acyclic fibration, then composition with p induces a
bijection p∗ : πl(A, Y )→ πl(A,X), [f ] 7→ [pf ].

Proof. The map p∗ is well-defined: if H is a left homotopy from f to g, then pH is a left homotopy from pf
to pg.

Surjectivity: let [f ] ∈ πl(A,X). Find a lift g : A→ Y in

∅ Y

A X

p∼

f

g

Then p∗[g] = [pg] = [f ].

Injectivity: let f, g : A → Y and suppose pf
l∼ pg : A → X. Consider a left homotopy H : cyl(A) → X

from pf to pg. Find a lift H̃ in

A tA Y

cyl(A) X.

ftg

p∼

H

H̃

Then H̃ is a homotopy from f to g. �

Proof of theorem 3.11. Suppose f : A
∼−→ X is a weak equivalence. Factor it as an acyclic cofibration followed

by an acyclic fibration:

A
q
�
∼
C

p
�
∼
X.

Observe that C is bifibrant. Construct a lifting s in the diagram

∅ C

X X

p∼s

Then ps = idX . We claim that s is a two-sided homotopy inverse to p. Consider the homotopy class [sp].
Then p∗[sp] = [psp] = [p] = p∗[idC ]. So by the previous lemma, [sp] = [idC ] as wanted.

Dually, there exists a two-sided homotopy inverse r for q. Then rs is a two-sided homotopy inverse for
f = pq.

Conversely, suppose f has a homotopy inverse. Again factor f as

A
q
�
∼
C

p
� X.

We want to show that p is a weak equivalence and then we’ll be done by 2-of-3.
Let g : X → A be a homotopy inverse to f , and let H : cyl(X) → X be a homotopy from fg to idX .

Since X is cofibrant, i0 : X
∼
� cyl(X) is an acyclic cofibration. Lift H to H̃ in the diagram

X A C

cyl(X) X.

g

i0 ∼

q

∼
p

H

H̃

8



Set s = H̃i1. Then ps = idX and H̃ is a homotopy qg ∼ s.
Use the first part of this proof to produce a homotopy inverse r for q. Then

pq = f ⇒ pqr = fr ⇒ p ∼ fr

and so

sp ∼ qgp ∼ qgfr ∼ qr ∼ idC .

We claim that it follows from this that sp is a weak equivalence. Let K be a left homotopy from idC to
sp. Since idC = Kj0 and j0 are weak equivalences, so is K. Then because j1 is a weak equivalence, so is
Kj1 = sp.

Finally, observe that p is a retract of sp, so it too is a weak equivalence.

C C C

X C X.

p sp∼ p

s p

�

4. The homotopy category of a model category

For each object X in C, we can apply factorization to ∅ → X to obtain an acyclic fibration QX
∼
� X with

QX cofibrant. Dually, we can also apply factorization to X → ∗ to obtain an acyclic cofibration X
∼
� RX

with RX fibrant. We shall call QX (resp. RX) the cofibrant (resp. fibrant) replacement of X.

Example 4.1. In the projective model structure on ChR, a cofibrant resolution is precisely a projective
resolution/cover from homological algebra. A fibrant resolution in the injective model structure is an injective
resolution/envelope.

Definition 4.2. The homotopy category Ho(C) is the category with the same objects as C and

Ho(C)(X,Y ) = π(RQX,RQY ).

There is a natural functor γ : C→ Ho(C).

Proposition 4.3 ([DS95, Prop. 5.8]). If f is a morphism of C, then γ(f) is an isomorphism in Ho(C) iff
f is a weak equivalence.

In fact we can say something stronger:

Theorem 4.4 ([DS95, Thm. 6.2]). The functor γ : C → Ho(C) is a localization of C with respect to its
weak equivalences W. That is to say, γ is initial amongst functors that takes weak equivalences in C to
isomorphisms in Ho(C).

This achieves one of the purpose of model categories stated in the introduction.

5. Derived functors

Recall:

Definition 5.1. Let F : C → D be a functor between model categories. A total left derived functor
LF : Ho(C)→ Ho(D) that is equipped with a terminal natural transformation LF ◦ γC → γD ◦ F .

C D

Ho(C) Ho(D)

F

γC ⇑ γD

LF

Dually, a total right derived functor RF : Ho(C) → Ho(D) that is equipped with an initial natural
transformation γD ◦ F → RF ◦ γC.

9



We return to a question asked in the introduction: what conditions are needed on a functor F : C→ D so
that it gives a nice derived functor Ho(C)→ Ho(D)? We said previously that if F were already homotopical,
then it has a derived functor. It turns out that there is a larger class of functors that possess nicely-behaved
derived functors.

Definitions 5.2. Let C and D be model categories. A functor F : C→ D is

(i) a left Quillen functor if F is a left adjoint and preserves cof and W ∩ cof , and
(ii) a right Quillen functor if F is a right adjoint and preserves fib and W ∩ fib.

Lemma 5.3 (Ken Brown’s lemma). Let F : C → D be a functor between model categories. If F carries
acyclic cofibrations between cofibrant objects to weak equivalences, then F preserves all weak equivalences
between cofibrant objects.

Exercise 5.4. Prove this!

As a consequence, a left Quillen functor preserves weak equivalences between cofibrant objects. Dually, a
right Quillen functor preserves weak equivalences between fibrant objects.

Now we see how to define derived functors. Loosely speaking, LF is given by first taking a cofibrant
replacement and then applying F , and RF is fibrant replacement followed by F .

Theorem 5.5 (Quillen adjunction/equivalence theorem). Suppose F : C → D and G : D → C form a
Quillen adjunction, i.e., F a G and F is a left Quillen functor (⇔ G is a right Quillen functor). Then the
total derived functors LF : Ho(C) → Ho(D) and RG : Ho(D) → Ho(C) exist and form an adjoint pair on
the homotopy categories.

Suppose additionally that (F,G) form a Quillen equivalence: i.e., whenever A is cofibrant and X is fibrant,
a map f : A → GX is a weak equivalence iff its adjoint f [ : FA→ X is a weak equivalence. Then LF and
RG are inverse equivalences of homotopy categories.

Proof. Use the previous lemma. See [DS95, Thm. 9.7]. �

Examples 5.6.

(1) Consider the category ChR of chain complexes of R-modules and chain maps. Fix a chain complex
M and consider the adjunction

M⊗R? : ChR 
 ChR : HomR(M, ?).

If we equip ChR with the projective model structure on the left and the injective model structure
on the right, then this is a Quillen adjunction and gives rise to the derived tensor product M⊗L

R?
and the derived hom RHomR(M, ?). Taking homology recovers the usual Tor and Ext.

(2) |−| : sSet � Spaces : Sing is a Quillen equivalence. The slogan is “the homotopy theory of
topological spaces is the same as the homotopy theory of simplicial sets”.

(3) The category of nonnegatively graded chain complexes of abelian groups with the projective model
structure is Quillen equivalent to the category of simplicial abelian groups with the standard model
structure via the nerve and realization functors. This is the Dold-Kan correspondence.

Example 5.7 (Homology is the left derived functor of abelianization). Given a category C, we say that an
object X is abelian if C(−, X) is an abelian group. Let Cab be the full subcategory of abelian objects. Now
suppose that C is a model category and that Cab is also a model category with the same weak equivalences
and fibrations. Moreover, assume that the forgetful functor U : Cab → C has a left adjoint Ab, called
abelianization, so that (Ab, U) is a Quillen pair.

We define Quillen homology7 to be the left derived functor of Ab.
For concreteness, specialize to the case where C = Spaces (or sSet). Then we have Ab(X) = SP (X),

the infinite symmetric product of X. Note that

π∗LAb(X) ∼= π∗(SP (X)) ∼= H̃∗(X;Z).

The last isomorphism is the Dold-Thom theorem. So “homology is the left derived functor of abelianization”.
You can also recover other types of homology or cohomology from this.

7Possible paper topic # 14.
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Here is a high-level summary of what we’ve “accomplished”:

Theorem 5.8 ([Hov99, Thm. 1.4.3]). The homotopy category, derived adjunction, and derived natural
transformation define a pseudo-2-functor Ho : ModelCat→ Catad from the 2-category of model categories
and Quillen adjunctions to the 2-category of categories and adjunctions.

5.1. Homotopy limits and colimits. In this section we discuss an application of the theory of model
categories: defining homotopically correct common operations on objects.

Example 5.9. Consider the two horizontal maps in the following commutative square

Sn−1 = ∂Dn Dn

Sn−1 ∗

∼

All the vertical arrows are homotopy equivalences, but the cofibers of the horizontal maps are quite
different. This shows that taking cofibers – in general, any limit or colimit – is not homotopically well-
behaved. Intuitively, the quotient – where we demand points be identified on the nose – is too homotopy-
insensitive; instead, one ought to instead “join” points with paths. This gives

colim(Sn−1 ← Sn−1 × I → ∗) ∼= Sn.

Thus, according to this reasoning, the cofiber of the top map, i.e., Sn, is the “true” cofiber. Model categories
gives a way to make this intuition precise: only the top map is a cofibration.

Homotopy limits and colimits can be constructed as derived functors in the setting of model categories.
Let C be a model category. Recall we have adjunctions colim ` c ` lim, where c is the constant diagram
functor. For concreteness, let J be a small indexing category over which we want to take a colimit. To order
to apply the Quillen adjunction theorem, we need to find a model structure on CJ so that colim ` c is a
Quillen pair. Since we want c to be a right Quillen functor, we see that CJ ought to have pointwise fibrations
and pointwise weak equivalences.

Proposition 5.10. If J is Reedy (e.g., coequalizer, pushout, and direct limit diagrams are all Reedy), there
is a model structure on CJ called the Reedy model structure whose weak equivalences are precisely pointwise
weak equivalences.

This model structure is often suitable for computing homotopy colimits or homotopy limits. (The precise
condition is J having cofibrant constants or fibrant constants respectively.)

Using this, one can define, e.g., homotopy colimits as

hocolim = L colim = colim ◦Q,
i.e., by taking a cofibrant resolution of the diagram and then taking the usual colimit.

Unravelling the definition of the Reedy model structure in the case J = [1], we see X : [1]→ C is a Reedy
cofibrant diagram if X0 and X1 are cofibrant and X0 → X1 is a cofibration.

So roughly speaking in general, cofibrant replacement replaces all the objects with cofibrant ones and all
the arrows in the diagram with cofibrations. This accords with our philosophy that the cofiber of Sn−1 → ∗
should be Sn−1 as in the example.

Example 5.11. Examples of homotopy colimits include mapping cones, mapping cylinders, mapping tele-
scopes.

If the indexing category J turns out to not be Reedy, we can put assumptions on the model category C
instead:

Remark 5.12. Let J be any small category.

(a) If C is a cofibrantly generated model category, then CJ has the projective model structure, which is
suitable for computing homotopy colimits.

Most model categories in practice are cofibrantly generated.
(b) If C is combinatorial, then CJ has the injective model structure, which is suitable for computing homotopy

limits.
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(c) It is interesting to note that the Reedy model structure sits between the projective and injective model
structures, when all three exist. In other words, the identity maps give Quillen equivalences

CJ
proj

∼−→ CJ
Reedy

∼−→ CJ
inj.

Remark 5.13. There is an alternative approach to homotopy colimits (resp. limits) if we work with simplicial
(resp. cosimplicial) objects, using the bar (resp. cobar) construction. In good cases the two answers agree.
The idea is that the simplicial (resp. cosimplicial) replacement of a diagram of cofibrant (resp. fibrant) objects
is automatically Reedy cofibrant (resp. Reedy fibrant).

Also see: the Bousfield-Kan formula.

6. The small object argument

Often, the hardest part of equipping a category with a model structure is to prove factorization. This is
often done using Quillen’s small object argument.

Theorem 6.1 (Small object argument). Let I ⊂ Mor(C) be a collection of morphisms such that C has all
colimits. Suppose for each f ∈ I, dom(f) is small (e.g., if C is locally presentable). Then (cell(I), rlp(I)) is
a weak factorization system.

I can’t be bothered to finish typing this out. . . it’s unlikely I’ll get this far anyway.
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