Homework #5

Math 231b

"Due": April 26th, 2017

Guidelines:

- Type up your solution to the assignment in LATEX. (You might want to avail yourself of the excellent diagrams package tikz-cd.)
- Submit the PDF via Canvas, in the Assignments section.

Failure to meet these guidelines may result in loss of points.¹

Problem 1. Suppose you believe in complex Bott periodicity, so that the homotopy groups of BU(n) have the form $\pi_{\text{odd}}BU(n) = 0$ and $\pi_{\text{even}}BU(n) = \mathbb{Z}$ in the range [0, 2n]. Set n = 3 and describe the action of the Steenrod algebra on $H^*(BU(3); \mathbb{F}_2)$. Then try n = 4. Then n = 5. Stop once you get sick of the exercise.

Problem 2. Return to the picture of the Adams spectral sequence computing π_*ko described in class. At a glance, it appears that there could be a potential differential $d_rh_1 = h_0^{r+1}$. Without assuming Bott periodicity, argue why this differential cannot occur. (Hint: $h_0h_1 = 0$.)

Problem 3. Compute the first several terms (until you get tired) of a free resolution of \mathbb{F}_2 as a module over the Steenrod algebra. (To check your answer, you can find a considerable chunk of such a resolution on page 85 of this PDF: https://www.math.cornell.edu/~hatcher/AT/ATch5.pdf.) Once you have the resolution, use it to compute Ext and compare your answer with the part of the Adams spectral sequence drawn in class.

Problem 4. Let E(1) denote the exterior \mathbb{F}_2 -algebra on two generators e_1 and e_3 , of degrees 1 and 3 respectively. Calculate $\operatorname{Ext}_{E(1)}^{*,*}(\mathbb{F}_2,\mathbb{F}_2)$.

Task 5. Try to read Section 8 of Steve Wilson's Brown–Peterson Homology: An Introduction and Sampler. He gives a calculation of the mod–p Steenrod algebra there—try to convert it into a calculation of the mod–2 Steenrod algebra, which simplifies his discussion considerably. (The space he calls \underline{K}_q is what we are calling $K(\mathbb{F}_p, q)$.) (You shouldn't need any of the meat of the previous 7 sections to read this—except for the definition of a "Hopf ring", which is at the start of Section 7.)

Problem 6. Figure out both the statement and the proof of the 5–Lemma and the Snake Lemma in mod–C homological algebra.

¹This version of the assignment was compiled on April 12, 2017.