Homework \#5

Math 231b

"Due": April 26th, 2017

Guidelines:

- Type up your solution to the assignment in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$. (You might want to avail yourself of the excellent diagrams package tikz-cd.)
- Submit the PDF via Canvas, in the Assignments section.

Failure to meet these guidelines may result in loss of points ${ }_{-}^{1}$
Problem 1. Suppose you believe in complex Bott periodicity, so that the homotopy groups of $B U(n)$ have the form $\pi_{\text {odd }} B U(n)=0$ and $\pi_{\text {even }} B U(n)=\mathbb{Z}$ in the range $[0,2 n]$. Set $n=3$ and describe the action of the Steenrod algebra on $H^{*}\left(B U(3) ; \mathbb{F}_{2}\right)$. Then try $n=4$. Then $n=5$. Stop once you get sick of the exercise.

Problem 2. Return to the picture of the Adams spectral sequence computing $\pi_{*} k o$ described in class. At a glance, it appears that there could be a potential differential $d_{r} h_{1}=h_{0}^{r+1}$. Without assuming Bott periodicity, argue why this differential cannot occur. (Hint: $h_{0} h_{1}=0$.)

Problem 3. Compute the first several terms (until you get tired) of a free resolution of \mathbb{F}_{2} as a module over the Steenrod algebra. (To check your answer, you can find a considerable chunk of such a resolution on page 85 of this PDF: https://www.math. cornell.edu/~hatcher/AT/ATch5.pdf.) Once you have the resolution, use it to compute Ext and compare your answer with the part of the Adams spectral sequence drawn in class.

Problem 4. Let $E(1)$ denote the exterior \mathbb{F}_{2}-algebra on two generators e_{1} and e_{3}, of degrees 1 and 3 respectively. Calculate $\operatorname{Ext}_{E(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$.
Task 5. Try to read Section 8 of Steve Wilson's Brown-Peterson Homology: An Introduction and Sampler. He gives a calculation of the $\bmod -p$ Steenrod algebra there - try to convert it into a calculation of the mod-2 Steenrod algebra, which simplifies his discussion considerably. (The space he calls \underline{K}_{q} is what we are calling $K\left(\mathbb{F}_{p}, q\right)$.) (You shouldn't need any of the meat of the previous 7 sections to read this- except for the definition of a "Hopf ring", which is at the start of Section 7.)

Problem 6. Figure out both the statement and the proof of the 5 -Lemma and the Snake Lemma in mod- \mathcal{C} homological algebra.

[^0]
[^0]: ${ }^{1}$ This version of the assignment was compiled on April 12, 2017.

