
Homework #4

Math 231b

“Due”: April 12th, 2017

Guidelines:

• Type up your solution to the assignment in LATEX. (You might want to avail yourself of the excellent
diagrams package tikz-cd.)

• Submit the PDF via Canvas, in the Assignments section.

Failure to meet these guidelines may result in loss of points.1

Problem 1. Prove the transgressive differential lemma from class. Let F
i−→ E → B be a fibration, and let

B
π←− C(i)

δ−→ ΣF

by the naturally induced maps. Show that the following situations are equivalent:

• A class x ∈ HnB has d<n(x) = 0 and dn(x) = y for some class y ∈ Hn−1F (up to some indeterminacy).

• There is a class τ(x) ∈ HnC(i) with δ∗τx = y and π∗τx = x.

Problem 2. The (2–adic) Bockstein spectral sequence is the filtration spectral sequence arising from the
diagram

Z∧2 · · · Z Z Z

· · · Z/2 Z/2 Z/2.

2 2

Applying H∗(X;−) to this diagram of coefficients gives a spectral sequence of signature

E∗,∗1 =
⊕
∗
H∗(X;F2) ∼= F2[w]⊗H∗(X;F2)⇒ H∗(X;Z∧2 ),

where the E1–page consists of many duplicated copies of H∗(X;F2), which we can think of as tagged by
monomials in w.2

1. Show that the differentials in this spectral sequence are “w–linear”, i.e., dBSS
r (wkx) = wkdBSS

r (x).

2. Show that a torsion-free class x ∈ H∗(X;Z∧2 ) is in ker dBSS
r on all pages Er and never in im dBSS

r .
Demonstrate that this condition is equivalent to the corresponding class in the spectral sequence being
w–torsion–free.

3. More generally, show that the order of w–torsion of a class on the E∞ page of the spectral sequence is
identical to the 2–primary torsion order of the corresponding cohomology class in H∗(X;Z∧2 ).

1This version of the assignment was compiled on March 27, 2017.
2There is (of course) also a homological version of this construction, which you should also be aware of.
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4. Show that dBSS
1 in this spectral sequence is computed by the Steenrod square Sq1.

Problem 3. Use this spectral sequence to make a calculation of H∗(K(Z/2, 2);Z∧2 ) from the calculation of
H∗(K(Z/2, 2);F2) given in class. You will want to know the following mysterious formula:3 for any class
x ∈ Heven(X;F2) where dBSS

r (x) is defined, we have

dBSS
r (x2) =

{
Sq1(x) · x+ Sq|x| Sq1(x) for r = 2,

dBSS
r−1(x) · x for r > 2.

Problem 4. Let F
j−→ E

p−→ B be a fiber sequence, let u ∈ Hn(F ;F2) be class that transgresses to
τ(u) ∈ Hn+1(B;F2), and suppose that for some integer i ≥ 1 there is a Bockstein differential dBSS

i v = τ(u).
Show that dBSS

i+1 p
∗v is then defined and that j∗dBSS

i+1 p
∗(v) = dBSS

1 (u), where again dBSS
1 is the first Bockstein

differential.4

Problem 5. I may not have done a good job of stating this problem. If you run into issues
with solving this, please email me so that I can fix whatever mistakes I’ve made. (The al-
gebra extensions in part 2 seem particularly fishy. . . .) In this problem, you will reinvent one of
the main results of unstable rational homotopy. For a simply connected space X, we inductively define its
rationalization to be a space Q⊗X under X as follows: given a Postnikov fibration

K(πnX,n)→ X[0, n]→ X[0, n),

and the rationalization map X[0, n) → (Q⊗X)[0, n), we construct a corresponding Postnikov fibration for
Q⊗X as the back face in

K(Q⊗ πnX,n) K(Q⊗ πnX,n)

K(πnX,n) K(πnX,n)

(Q⊗X)[0, n] ∗

X[0, n] ∗

(Q⊗X)[0, n) K(Q⊗ πnX,n+ 1)

X[0, n) K(πnX,n+ 1).

Here the nodes X[0, n] and (Q⊗X)[0, n] are defined as the total spaces of the pullback fibrations, and the
map between them is induced by the universal map of fibrations. We set Q⊗X to be the homotopy inverse
limit

Q⊗X = limn(Q⊗X)[0, n],

which has the factorization property

π∗X Q⊗ π∗X π∗(Q⊗X).'

3This is Proposition 6.8 of May’s A general algebraic approach to Steenrod operations.
4I haven’t actually tried to work this out. You might find it helpful to know that there’s a re-indexing of the Bockstein

spectral sequence, where you instead use the inverse system {Z/(2j)}∞j=1 and identify all the fibers of these maps as Z/2—or
maybe not.
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Now, justify the following claims:

1. The rational cohomology of rational Eilenberg–Mac Lane spaces is given by

H∗(K(Q, n);Q) =

{
Q[xn] if n is even,

Q[xn]/x2
n if n is odd.

2. The cohomology H∗(X(n,∞);Q) as well as its ring structure are completely determined by the coho-
mology ring H∗(X[n,∞);Q).

3. The map X → Q⊗X is an isomorphism on rational cohomology.

4. The Postnikov fibrations K(Q⊗ πnX,n)→ (Q⊗X)[0, n]→ (Q⊗X)[0, n) give a model for C∗(X;Q)
whose underlying graded-commutative algebra is free and which uses the minimal number of algebra
generators.5

5. Any rational commutative differential-graded algebra A∗ with A0 = Q and A1 = 0 inductively receives
a quasi-isomorphism from a Sullivan model.67

6. There is a sequence of Postnikov sections X[0, n)→ K(πnX,n+ 1), hence a space X, whose Sullivan
model is the one associated to A∗.

7. Given a Sullivan model for C∗(X;Q), its indecomposables compute the rational homotopy groups of
X.

8. The rational homotopy groups of Sn, n > 1, are given by

Q⊗ π∗Sn =

{
ΣnQ if n is odd,

ΣnQ⊕ Σ2n−1Q if n is even.

Problem 6. 1. The tensor product of line bundles induces a map

BU(1)×BU(1)
⊗−→ BU(1)

on the object BU(1) representing the functor X 7→ {iso-classes of line bundles on X}. Describe the
behavior of this map in ordinary cohomology with Z coefficients.

2. In general, the tensor product of vector bundles induces a similar map

BU(n)×BU(m)
⊗−→ BU(nm).

Describe the behavior of this map in ordinary cohomology as well.

Problem 7. The dual Steenrod algebra is a Hopf algebra, meaning that it not only has a multiplication
map but also a diagonal map ∆: A∗ → A∗ ⊗A∗ and an antipode map χ : A∗ → A∗. In class, we deduced
a formula for ∆, and we showed that as an algebra the dual Steenrod algebra forms a polynomial ring. The
antipode fits into the commutative diagram

5Such a presentation of the rational cochain complex is called a Sullivan minimal model. It may please you to check that
two such models are related by a chain homotopy equivalence.

6In fact, this happens in a natural way: a map A∗ → B∗ of cDGAs induces a map of their Sullivan models.
7It’s fun / instructive to see the natural algorithm for this fail in the case of C∗(S1 ∨ S1;Q).
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A⊗A A⊗A

A F2 A

A⊗A A⊗A,

χ⊗1

µ∆

ε

∆

η

1⊗χ

µ

along with the algebra unit η and counit ε. Use all this to give a recursive formula for the behavior of χ.
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