
Homework #3

Math 231b

“Due”: March 22nd, 2017

Guidelines:

• Type up your solution to the assignment in LATEX. (You might want to avail yourself of the excellent
diagrams package tikz-cd.)

• Submit the PDF via Canvas, in the Assignments section.

Failure to meet these guidelines may result in loss of points.1

Problem 1. Consider a diagram of three inverse systems of abelian groups

· · · 0 0 · · ·

· · · An+1 An · · ·

· · · Bn+1 Bn · · ·

· · · Cn+1 Cn · · ·

· · · 0 0 · · · ,

fn+1

gn+1

hn+1

such that every column forms a short exact sequence.

1. Show that the limit of, say, (An) can be described by the kernel sequence

limAn
ker−−→

∏
n

An

∏
n id−

∏
n fn−−−−−−−−−→

∏
n

An.

2. The map on limits limAn → limBn → limCn no longer need be short-exact. Define lim 1An to be the
cokernel of the map described above, and show that there is instead an exact sequence of the form

0→ limAn → limBn → limCn → lim 1An → lim 1Bn → lim 1Cn → 0.

Problem 2. Consider a tower of fibrations

· · · → Xn+1
fn+1−−−→ Xn → · · · .

1This version of the assignment was compiled on March 22, 2017.
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Show that there is a short exact sequence, called the Milnor sequence, given by

0→ lim
n

1 (πm+1Xn)→ πm

(
lim
n
Xn

)
→ lim

n
(πmXn)→ 0.

(Hint: find a model for the limit of the tower of fibrations analogous to the one for the colimit of a tower of
inclusions presented in Switzer 7.53. This model is itself inspired by rewriting the tower as an endomorphism
of an infinite product, and filtering this model by “near the start” and “near the end” of the endomorphism.)

Problem 3. 2 Produce the Milnor short exact sequence for a generalized cohomology theory E applied to
an increasing union of spaces Xn:

0→ lim
n

1(Em−1Xn)→ Em
(

colim
n

Xn

)
→ lim

n
(EmXn)→ 0.

Problem 4. 1. Use this to calculate the integral cohomology of “the circle with p inverted”. This space
is given by infinitely iterating the mapping cylinder construction on the p–fold covering

S1 p−→ S1.

(That is: the first stages of this look like S1 ∪p (S1 × I), then (S1 ∪p (S1 × I)) ∪p (S1 × I), . . . .)3

2. Compare your answer with the homology of this same space and analyze the behavior of the universal
coefficient sequence.

Task 5. Read pages 158–163 of Switzer, which describe the representability of sheaf-like functors defined
only on finite CW-complexes. (In particular, this makes fairly intensive use of the understanding of inverse
limits which you have just developed.)

Task 6. Strongly consider reading pages 346–351 of Switzer, which actually goes through the identification
of the Serre E2 term. It’s very tedious, but it’s worth seeing once. Alternatively, you could these course
notes, which give a much prettier description of the Serre spectral sequence in terms of a double complex:
http://math.mit.edu/classes/18.906/spr09/sss.pdf . As trade, you then have to additionally work
out how such a spectral sequence arises as a filtration spectral sequence.

Problem 7. As in class, define S(p) to be the spectrum representing X 7→ hSpectra(Σ∞X,S)⊗Z Z(p).

1. Describe the homology functor associated to S(p). (Hint: restrict attention to finite complexes X,
where DX = F (X,S) defines an involutive dual.)

2. Demonstrate E(p) ' E ∧ S(p) for any spectrum E. In particular, this gives S(p) ∧ S(p) ' S(p).

3. Define πn,(p)E = [Sn(p), E]. Show πn,(p)E(p) = πnE(p).

4. Conclude the more general adjunction

hSpectra(F,E(p)) ∼= hSpectra(F(p), E(p)).

5. Finally, we can also give a concrete construction of S(p). Consider the infinite directed system

S p−→ S p−→ S p−→ · · · .

Form the mapping telescope T associated to this system and check that this gives a model for S(p) in
hSpectra.

2This problem can also be done independently of Problem 2, by directly using the endomorphism-cylinder construction
presented in Switzer and applying cohomology to that, rather than taking the time to figure out what its dual looks like and
remembering that cohomology appears as the homotopy of a certain spectral object.

3If you haven’t seen this construction before, you should check that for a ring element r ∈ R and an R–module M ,

colim
(
M

r−→M
r−→M

r−→ · · ·
)

= M [r−1].
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