Homework #2

Math 231b

"Due": March 1st, 2017

Guidelines:

- Type up your solution to the assignment in LATEX. (You might want to avail yourself of the excellent diagrams package tikz-cd.)
- Submit the PDF via Canvas, in the Assignments section.

Failure to meet these guidelines may result in loss of points.¹

Task 1. Read Chapter 5 to see a "proper" definition of a CW-structure on a pre-existing space.

Task 2. Skim through Chapter 6 and look at all the proofs we skipped. Try reading a few. Then try reading a few more. Move on to the rest of the problem set whenever you like.

Problem 3. Show that if (X, A) is a relative CW-complex, then X/A is a CW-complex. Given CW-complexes X and Y, use this to concoct appropriate conditions so that $X \wedge Y$ is a CW-complex.

Problem 4. Suppose (X, A) is a relative CW-complex and $p: E \to B$ is a weak fibration. Show that for any map $f: X \to E$ and homotopies $F: X \times I \to B$, $H: A \times I \to E$ with $F_0 = p \circ f$, $H_0 = f|_A$, and $p \circ H = F|_{A \times I}$ there is a homotopy $G: X \times I \to E$ lifting F with $G|_{A \times I} = H$, $G_0 = f$, and $p \circ G = F$. Diagrammatically, these conditions are summarized as

Problem 5. Suppose X is obtained from A by attending *n*-cells $\{e_{\beta}^{n} \mid \beta \in B\}$. Show that $X/A \cong \bigvee_{\beta \in B} S_{\beta}^{n}$, and that the homeomorphism can be chosen so that the diagram

commutes, where f_{β} is the characteristic map of e_{β}^{n} .

Problem 6. Show that if $f: X \to Y$ is a cellular map of CW-complexes, then $Y \cup_f CX$ is naturally a CW-complex.

¹This version of the assignment was compiled on April 10, 2017.

Problem 7. Justify some of our ad hoc constructions from class by proving the following: let C be a category with finite products and a zero object and let $F: C^{op} \to \text{Groups}$ be a group-valued functor. Show that if F is represented by an object Y by a natural transformation $t: C(-, Y) \to F$, then Y carries a group structure which causes C(-, Y) to be group-valued and the comparison natural isomorphism t to respect the group structure.