Homework #1

Math 231b

"Due": February 15th, 2017

Guidelines:

- Type up your solution to the assignment in LATEX. (You might want to avail yourself of the excellent diagrams package tikz-cd.)
- Submit the PDF via Canvas, in the Assignments section.

Failure to meet these guidelines may result in loss of points.

Problem 1. Consider the unreduced mapping cylinder M_f of a map $f: X \to Y$, together with its inclusion $i: Y \to M_f$. Show that the usual retraction $r: M_f \to Y$ of i (which projects down from the interval coordinate) induces an isomorphism $r_*: \pi_*M_f \to \pi_*Y$. (We used this fact when constructing the homotopy long exact sequence of an arbitrary pair.)

Problem 2. Show that if $f: X \to Y$ is a homotopy equivalence, then $f_*: \pi_*(X, x_0) \to \pi_*(Y, f(x_0))$ is an isomorphism for all choices of $x_0 \in X$ and $* \ge 0$.

Problem 3. In class, I used the mysterious phrase "limit condition" twice. Given a functor $F: J \to C$, thought of as a J-shaped diagram in C, we define a *cone* of F to be a constant functor $x: J \to C$ together with a natural transformation $x \to F$. A *limit* of F is a terminal object in the category of cones.

1. Expand the definition of natural transformation and constant functor to reveal that a cone is equivalent to the data of an object $x \in C$ together with maps $f_j: x \to F(j)$ for each object $j \in J$ such that for any map $g: j \to j'$ in the diagram there is a commuting triangle

- 2. Now expand the definition of limit to see that a limit, expressed as an object ℓ together with maps h_j , has the property that any other cone point x and its maps f_j factor uniquely through a map $x \to \ell$.
- 3. Show that the product $X \times Y$ is the limit of the diagram with objects X and Y and no non-identity arrows.
- 4. Show that the equalizer E of a pair of functions $X \rightrightarrows Y$ of sets is indeed the limit of that diagram.

Problem 4. A functor $G: \mathbb{C}^{\mathrm{op}} \to \mathsf{Sets}$ is called *representable* when there exists an object Y and a natural isomorphism

$$G \xrightarrow{\simeq} \mathsf{Sets}(-, Y).$$

1. From a morphism $t: Y \to Y'$ of representing objects, construct a natural transformation $t_*: G \to G'$ of the functors they represent.

- 2. From a natural transformation $G \to G'$ of represented functors, construct a morphism $Y \to Y'$ of the representing objects.
- 3. Show also that your assignments respect composition of natural transformations and of morphisms.
- 4. Show that your assignments are mutual inverses, i.e., a natural transformation of representable functors is exactly the same information as a morphism of representing objects.

Congratulations! You have proved the Yoneda lemma: the functor

$$C \rightarrow Categories(C^{op}, Sets)$$

describes a fully faithful embedding.

Problem 5. Explain convincingly why the usual recipe for forming a group structure on $\pi_1(X, x_0)$ does not apply to the set of relative homotopy classes $\pi_1(I, \partial I)$.

Problem 6. Let $p: E \to B$ be a map and consider

$$Z = \{(e, \gamma) \in E \times B^I \colon p(e) = \gamma(0)\} \subseteq E \times B^I.$$

A path lifting function for p is a map $\lambda: Z \to E^I$ with $\lambda(e, \gamma)(0) = e$ and $p \circ \lambda(e, \gamma) = \gamma$.

- 1. Show that p is a fibration if and only if there is a path lifting function λ for p.
- 2. Let $p: E \to B$ be a fibration with fiber F, and let P_p be the pathspace construction p described in class. Given a path lifting function $\lambda: Z \to E^I$ for p, define maps

$$g: F \to P_p, \qquad f \mapsto (f, \omega_0),$$

$$h: P_p \to F, \qquad (e, \gamma) \mapsto [\lambda(e, \gamma^{-1})](1),$$

where " γ^{-1} " denotes the path γ run backwards. Show that g and h present the two halves of a homotopy equivalence.