Double your money back guarantee! If your answer is scored wrong and you can demonstrate that the integral can be done successfully using your method you get a two point bonus. Note: In all cases the integral contains an arbitrary constant of integration, which I did not bother writing.

Problem 1: If you were to attempt to do the following integral

$$
I=\int \sin ^{3}(2 x) \cos ^{2}(2 x) d x
$$

via a substitution, what substitution would you make?
a $u=\sin ^{3}(2 x)$
b $u=\sin (2 x) \cos (2 x)$
c $u=\cos ^{2}(2 x)$
d $u=\sin (2 x)$
e $u=\cos (2 x)$
Problem 2: Compute the following integral

$$
I=\int \sin ^{3}(2 x) \cos ^{2}(2 x) d x
$$

a $I=\frac{1}{2}\left(\frac{\sin ^{5}(2 x)}{5}-\frac{\sin ^{3}(2 x)}{3}\right)$
b $I=\frac{1}{4}\left(\frac{\cos ^{6}(2 x)}{6}-\frac{\cos ^{4}(2 x)}{4}\right)$
c $I=\frac{1}{2}\left(\frac{\cos ^{5}(2 x)}{5}-\frac{\cos ^{3}(2 x)}{3}\right)$
d $I=\frac{1}{4}\left(\frac{\sin ^{5}(2 x)}{5}-\frac{\sin ^{3}(2 x)}{3}\right)$
e $I=\frac{1}{3}\left(\frac{\sin ^{4}(2 x)}{4}-\frac{\sin ^{2}(2 x)}{2}\right)$

Problem 3: Compute the following integral

$$
I=\int \tan ^{3}(2 x) d x
$$

a $u=-\ln |\sec (2 x)+\tan (2 x)|+2 \sec (2 x)$
b $u=\ln |\sec (2 x)+\tan (2 x)|+\sec (2 x)$
c $u=\frac{\tan ^{4}(2 x)}{8}$
d $u=\frac{\sec ^{2}(2 x)}{4}-\frac{\ln |\sec (2 x)|}{2}$
e $u=\frac{\sec ^{2}(2 x)}{2}-\frac{\ln |\sec (2 x)|}{2}$

Problem 4: What substitution is your best bet for calculating the following integral

$$
I=\int \frac{d x}{x^{2} \sqrt{x^{2}-1}}
$$

a $x=3 \tan (u)$
b $x=\sec (u)$
c $x=\tan (u)$
d $x=3 \sec (u)$
e $x=\sin (u)$

Problem 5: Evaluate the integral

$$
I=\int \frac{d x}{x^{2} \sqrt{x^{2}-1}}
$$

a $I=\operatorname{arcsec}(x)$
b $I=x \arcsin (x)-\sqrt{x^{2}-1}$
c $I=\frac{x}{\sqrt{x^{2}-1}}$
d $I=\frac{\sqrt{x^{2}-1}}{x}$
e $I=\frac{1}{x \sqrt{x^{2}-1}}$
Problem 6: Suppose that you make the change of variables

$$
u=4 \sec (x)
$$

Express the quantity

$$
\sin (x)
$$

in terms of u
a $\sin (x)=\frac{u}{\sqrt{u^{2}-16}}$
b $\sin (x)=\frac{\sqrt{u^{2}-4}}{u}$
c $\sin (x)=\frac{\sqrt{u^{2}-1}}{u}$
$\mathbf{d} \sin (x)=\frac{\sqrt{u^{2}-16}}{u}$
e $\sin (x)=\frac{4}{u}$

