Double your money back guarantee! If your answer is scored wrong and you can demonstrate that the integral can be done successfully using your method you get a two point bonus. **Note:** In all cases the integral contains an arbitrary constant of integration, which I did not bother writing.

Problem 1: If you were to attempt to do the following integral

$$I = \int \sin^3(2x) \cos^2(2x) dx$$

via a substitution, what substitution would you make?

a $u = \sin^{3}(2x)$ **b** $u = \sin(2x)\cos(2x)$ **c** $u = \cos^{2}(2x)$ **d** $u = \sin(2x)$ **e** $u = \cos(2x)$

Problem 2: Compute the following integral

$$I = \int \sin^3(2x) \cos^2(2x) dx$$

a $I = \frac{1}{2} \left(\frac{\sin^5(2x)}{5} - \frac{\sin^3(2x)}{3} \right)$
b $I = \frac{1}{4} \left(\frac{\cos^6(2x)}{6} - \frac{\cos^4(2x)}{4} \right)$
c $I = \frac{1}{2} \left(\frac{\cos^5(2x)}{5} - \frac{\cos^3(2x)}{3} \right)$
d $I = \frac{1}{4} \left(\frac{\sin^5(2x)}{5} - \frac{\sin^3(2x)}{3} \right)$
e $I = \frac{1}{3} \left(\frac{\sin^4(2x)}{4} - \frac{\sin^2(2x)}{2} \right)$

Problem 3: Compute the following integral

$$I = \int \tan^3(2x) dx.$$

a $u = -\ln|\sec(2x) + \tan(2x)| + 2\sec(2x)$
b $u = \ln|\sec(2x) + \tan(2x)| + \sec(2x)$
c $u = \frac{\tan^4(2x)}{8}$
d $u = \frac{\sec^2(2x)}{4} - \frac{\ln|\sec(2x)|}{2}$
e $u = \frac{\sec^2(2x)}{2} - \frac{\ln|\sec(2x)|}{2}$

Problem 4: What substitution is your best bet for calculating the following integral dx

$$I = \int \frac{dx}{x^2 \sqrt{x^2 - 1}}$$

a
$$x = 3 \tan(u)$$

b $x = \sec(u)$
c $x = \tan(u)$
d $x = 3 \sec(u)$
e $x = \sin(u)$

Problem 5: Evaluate the integral

$$I = \int \frac{dx}{x^2 \sqrt{x^2 - 1}}$$

- **a** $I = \operatorname{arcsec}(x)$
- **b** $I = x \arcsin(x) \sqrt{x^2 1}$
- c $I = \frac{x}{\sqrt{x^2 1}}$ d $I = \frac{\sqrt{x^2 - 1}}{x}$ e $I = \frac{1}{x\sqrt{x^2 - 1}}$

Problem 6: Suppose that you make the change of variables

$$u = 4\sec(x)$$

Express the quantity

 $\sin(x)$

in terms of \boldsymbol{u}

$$\mathbf{a} \ \sin(x) = \frac{u}{\sqrt{u^2 - 16}}$$
$$\mathbf{b} \ \sin(x) = \frac{\sqrt{u^2 - 4}}{u}$$
$$\mathbf{c} \ \sin(x) = \frac{\sqrt{u^2 - 1}}{u}$$
$$\mathbf{d} \ \sin(x) = \frac{\sqrt{u^2 - 16}}{u}$$
$$\mathbf{e} \ \sin(x) = \frac{4}{u}$$