1. (a) $\Delta x=(b-a) / n=(4-0) / 2=2$

$$
\begin{aligned}
& L_{2}=\sum_{i=1}^{2} f\left(x_{i-1}\right) \Delta x=f\left(x_{0}\right) \cdot 2+f\left(x_{1}\right) \cdot 2=2[f(0)+f(2)]=2(0.5+2.5)=6 \\
& R_{2}=\sum_{i=1}^{2} f\left(x_{i}\right) \Delta x=f\left(x_{1}\right) \cdot 2+f\left(x_{2}\right) \cdot 2=2[f(2)+f(4)]=2(2.5+3.5)=12 \\
& M_{2}=\sum_{i=1}^{2} f\left(\bar{x}_{i}\right) \Delta x=f\left(\bar{x}_{1}\right) \cdot 2+f\left(\bar{x}_{2}\right) \cdot 2=2[f(1)+f(3)] \approx 2(1.6+3.2)=9.6
\end{aligned}
$$

(b)

L_{2} is an underestimate, since the area under the small rectangles is less than the area under the curve, and R_{2} is an overestimate, since the area under the large rectangles is greater than the area under the curve. It appears that M_{2} is an overestimate, though it is fairly close to I. See the solution to Exercise 45 for a proof of the fact that if f is concave down on $[a, b]$, then the Midpoint Rule is an overestimate of $\int_{a}^{b} f(x) d x$.
(c) $T_{2}=\left(\frac{1}{2} \Delta x\right)\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+f\left(x_{2}\right)\right]=\frac{2}{2}[f(0)+2 f(2)+f(4)]=0.5+2(2.5)+3.5=9$.

This approximation is an underestimate, since the graph is concave down. Thus, $T_{2}=9<I$. See the solution to Exercise 45 for a general proof of this conclusion.
(d) For any n, we will have $L_{n}<T_{n}<I<M_{n}<R_{n}$.
2.

The diagram shows that $L_{4}>T_{4}>\int_{0}^{2} f(x) d x>R_{4}$, and it appears that M_{4} is a bit less than $\int_{0}^{2} f(x) d x$. In fact, for any function that is concave upward, it can be shown that $L_{n}>T_{n}>\int_{0}^{2} f(x) d x>M_{n}>R_{n}$.
(a) Since $0.9540>0.8675>0.8632>0.7811$, it follows that $L_{n}=0.9540, T_{n}=0.8675, M_{n}=0.8632$, and $R_{n}=0.7811$.
(b) Since $M_{n}<\int_{0}^{2} f(x) d x<T_{n}$, we have $0.8632<\int_{0}^{2} f(x) d x<0.8675$.
22. From Example 7(b), we take $K=76 e$ to get $\left|E_{S}\right| \leq \frac{76 e(1)^{5}}{180 n^{4}} \leq 0.00001 \quad \Rightarrow \quad n^{4} \geq \frac{76 e}{180(0.00001)} \quad \Rightarrow \quad n \geq 18.4$.

Take $n=20$ (since n must be even).
33. By the Net Change Theorem, the increase in velocity is equal to $\int_{0}^{6} a(t) d t$. We use Simpson's Rule with $n=6$ and $\Delta t=(6-0) / 6=1$ to estimate this integral:

$$
\begin{aligned}
\int_{0}^{6} a(t) d t \approx S_{6} & =\frac{1}{3}[a(0)+4 a(1)+2 a(2)+4 a(3)+2 a(4)+4 a(5)+a(6)] \\
& \approx \frac{1}{3}[0+4(0.5)+2(4.1)+4(9.8)+2(12.9)+4(9.5)+0]=\frac{1}{3}(113.2)=37.7 \overline{3} \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Page 1

1. (a) Since $\int_{1}^{\infty} x^{4} e^{-x^{4}} d x$ has an infinite interval of integration, it is an improper integral of Type I.
(b) Since $y=\sec x$ has an infinite discontinuity at $x=\frac{\pi}{2}, \int_{0}^{\pi / 2} \sec x d x$ is a Type Π improper integral.
(c) Since $y=\frac{x}{(x-2)(x-3)}$ has an infinite discontinuity at $x=2, \int_{0}^{2} \frac{x}{x^{2}-5 x+6} d x$ is a Type II improper integral.
(d) Since $\int_{-\infty}^{0} \frac{1}{x^{2}+5} d x$ has an infinite interval of integration, it is an improper integral of Type I.
2. (a) Since $y=\frac{1}{2 x-1}$ is defined and continuous on $[1,2], \int_{1}^{2} \frac{1}{2 x-1} d x$ is proper.
(b) Since $y=\frac{1}{2 x-1}$ has an infinite discontinuity at $x=\frac{1}{2}, \int_{0}^{1} \frac{1}{2 x-1} d x$ is a Type II improper integral.
(c) Since $\int_{-\infty}^{\infty} \frac{\sin x}{1+x^{2}} d x$ has an infinite interval of integration, it is an improper integral of Type I.
(d) Since $y=\ln (x-1)$ has an infinite discontinuity at $x=1, \int_{1}^{2} \ln (x-1) d x$ is a Type Π improper integral.
3. $\int_{-\infty}^{0} \frac{1}{2 x-5} d x=\lim _{t \rightarrow-\infty} \int_{t}^{0} \frac{1}{2 x-5} d x=\lim _{t \rightarrow-\infty}\left[\frac{1}{2} \ln |2 x-5|\right]_{t}^{0}=\lim _{t \rightarrow \infty}\left[\frac{1}{2} \ln 5-\frac{1}{2} \ln |2 t-5|\right]=-\infty$.

Divergent
8. $\int_{0}^{\infty} \frac{x}{\left(x^{2}+2\right)^{2}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{x}{\left(x^{2}+2\right)^{2}} d x=\lim _{t \rightarrow \infty} \frac{1}{2}\left[\frac{-1}{x^{2}+2}\right]_{0}^{t}=\frac{1}{2} \lim _{t \rightarrow \infty}\left(\frac{-1}{t^{2}+2}+\frac{1}{2}\right)$

$$
=\frac{1}{2}\left(0+\frac{1}{2}\right)=\frac{1}{4} . \quad \text { Convergent }
$$

13. $\int_{-\infty}^{\infty} x e^{-x^{2}} d x=\int_{-\infty}^{0} x e^{-x^{2}} d x+\int_{0}^{\infty} x e^{-x^{2}} d x$.
$\int_{-\infty}^{0} x e^{-x^{2}} d x=\lim _{t \rightarrow-\infty}\left(-\frac{1}{2}\right)\left[e^{-x^{2}}\right]_{t}^{0}=\lim _{t \rightarrow-\infty}\left(-\frac{1}{2}\right)\left(1-e^{-t^{2}}\right)=-\frac{1}{2} \cdot 1=-\frac{1}{2}$, and
$\int_{0}^{\infty} x e^{-x^{2}} d x=\lim _{t \rightarrow \infty}\left(-\frac{1}{2}\right)\left[e^{-x^{2}}\right]_{0}^{t}=\lim _{t \rightarrow \infty}\left(-\frac{1}{2}\right)\left(e^{-t^{2}}-1\right)=-\frac{1}{2} \cdot(-1)=\frac{1}{2}$.
Therefore, $\int_{-\infty}^{\infty} x e^{-x^{2}} d x=-\frac{1}{2}+\frac{1}{2}=0$. Convergent
14. $\int_{1}^{\infty} \frac{\ln x}{x} d x=\lim _{t \rightarrow \infty}\left[\frac{(\ln x)^{2}}{2}\right]_{1}^{t}\left[\begin{array}{l}\text { by substitution with } \\ u=\ln x, d u=d x / x\end{array}\right]=\lim _{t \rightarrow \infty} \frac{(\ln t)^{2}}{2}=\infty . \quad$ Divergent
