Homework 9 Solutions Bronski: Math 231
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15 the harmonic series; when = = 1, it is the alternating harmonic series, which converges by the Alternating Series Test.
Thus, I = (—1,1].
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By the Ratio Test, the series = comverges when 10 |z| <1 < |x| < 55, so the radius of convergence is R = 55.
n=1

When = = — %, the series converges by the Alternating Series Test, when = = 55, the series converges because it is a p-series

with p = 3 > 1. Thus, the interval of convergence is I = [—15. 15]-
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[by I'Hospital’s Rule] = m By the Ratio Test, the series converges when % <1 & |z|<4,s0R=4 When
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divergent harmonic series (without the n = 1 term), Zz — 1s divergent by the Comparison Test. When » = 4,

S (1) = i(—1]“%,whichc0ﬂvergesbyiheA1terﬂatingSeriesTest. Thus, T = (—4,4].
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Test, the series converges for all real + and we have R = oo and I = (—o0, 00).
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diverge by the Test for Divergence. Thus, the interval of convergence is I = (—2,2).
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2 If f(z) = Z bnz" converges on (—2,2), then [ f(x)dz = C + Z ] 2™ has the same radius of convergence

n=>0

(by Theorem 2), but may not have the same interval of convergence—it may happen that the inteprated series converges at an
endpoint (or both endpoints).
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c series = [—(2)?]" z)? l .
The geometric series 3 _(E) converges when _(E) <1l & 3 <1 & |z|"<9 & |z|<3s0

n=>0

R=3and ] = (—3.3).

(;) x Z[ —22*)™ or, equivalently, Z( 1)"2"z*"*!_ The series converges when

1 - (_2:‘72:} n=>0 n=>0
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[-22%| <1 = |2*| <3 = |x|qﬁ,soﬁ=ﬁandf=(—ﬁ__ﬁ)_

3 3 A B
11'ﬂx}=332—x—2=(3:—2j(:r:+1)=:r:—2+.r—|—1 = 3=Azx+1)4+B(zx—2). Letr=2toget A =1and
x=—1toget B = —1. Thus
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‘We represented f as the sum of two geometric series; the first converges for x € (—2, 2) and the second converges for (—1, 1).

Thus, the sum converges forz € (—1,1) = I
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13. (@) f(z) = ﬁ _ d_ﬁi(lj—l:r:) _ —dii [i:ju(—u“ 3:":| [from Exercise 3]

— 3°(=1)"*'nz"' [from Theorem 2()] = 3 (=1)"(rn + 1)z" with R = 1.
= n=>0

In the last step, note that we decreased the initial value of the summation variable » by 1, and then increased each

occurrence of n in the term by 1 [also note that (—1)""* = (—1)"].

® 1) = 5 = 3 oo |~ 3 |+ 0" [ompant @)

(1+=) 2dz | (1+z) o
= %i( D"+ na™"" =1 ijj(—l)"(nu)(nﬂ)x" with R = 1.
© F0) = (g == (e == 3 D+ 2+ )" [from part ()

_ % E;ﬂ(—m(n +2)(n + 1)z

42

To write the power series with =™ rather than =™, we will decrease each occurrence of 2 1 the term by 2 and increase

the initial value of the summation variable by 2. This gives us % i (—1)"(n)(n —1)z" with R = 1.
n=2
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