
Practice Math 25a Midterm #1 Solutions

Davis Lazowski

Problem 1. Let V be an n–dimensional vector space and let f : V → V be a linear map
such that ker f = im f . Show that n is even.

Solution. In this case dim ker f = dim im f. By rank nullity,

n = dimV = dim ker f + dim ker im = 2 dim ker f,

so that n is even, as required. (DL)

Problem 2. Let V be a finite dimensional vector space and let f : V → V be a linear
function. Suppose that any choice of basis for V gives the same matrix representation.
Prove that f = α · id for some scalar α.

Solution. Let v1, v2, v3...vn a basis. Then

T (v1) = α11v1 + α21v2 + · · ·+ αn1vn

Also, −v1, v2, v3...vn is a basis. So

T (−v1) = −α11v1 + α21v2 + · · ·+ αn1vn

By −1T (v1) = T (−v1),

T (−v1) = −α11v1 − α21v2 − · · · − αn1vn

Since these are equal we have that,

2T (−v1) = −2α11v1

T (v1) = α11v1

By linear dependence, therefore α21...αn1 are zero. Therefore by induction, T is diagonal.
Therefore using the basis (v1, v2....vn):

T (v1) = α11v1

T (v2) = α22v2
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By transposition, (v2, v1...vn) is a basis:

T (v2) = α11v2

T (v1) = α22v1

Therefore, α11 = α22. By induction, αjj = αj′j′ . Therefore this matrix is T = αid, as
desired. (DL)

Problem 3. Suppose that W is a complex vector space and f : W → W has no eigenvalues.
Prove that every subspace of W invariant under f is either 0 or ∞–dimensional.

Solution. Suppose dimW = n, 0 < n <∞. Let w ∈ W . Consider the list w, fw, f 2w, f 3w, . . . fnw.
This is a list of n+ 1 vectors, so is linearly dependent. So

0 = a0w + a1fw + · · ·+ anf
nw

0 = (a0 + a1x+ . . . anx
n)(f)(w)

Because this polynomial is over the complex numbers, we can factor this expression:

0 = (f − r1)(f − r2) . . . (f − rn)w

Because the operator p(f) is not injective (and in particular p(f|W ) is not injective) one of
these must not be also. So there must be v ∈ W : (f − rj)v = 0. Therefore, fv = rjv, so
there is an eigenvalue. Therefore, dimW must be 0 or ∞. (DL)

Problem 4. Let f : K2 → K2 act by f(x, y) = (y, x). Is f diagonalizable? If so, diagonalize
it. If not, argue why not.

Solution. f has eigenvector (1, 1). If f is diagonalisable, it has a second eigenvector in
〈(1, 1)〉⊥. This is a one dimensional subspace, which is spanned by (1,−1), and we see
f(1,−1) = k(−1, 1) is satisfied by k = −1. Therefore, f is diagonal in the basis((

1
1

)
,

(
1
−1

))
,

with matrix expression (
1 0
0 −1

)
. (DL)

Problem 5. Suppose V is finite-dimensional, f : V → V is a linear function, and U ≤ V is
a subspace. Prove that U and U⊥ are both invariant under f if and only if PUf = fPU .

Solution. Suppose U,U⊥ are invariant under f . Let u ∈ U,w ∈ U⊥. Then we can write
v ∈ V as v = u+ w. Then because f(u) ∈ U, f(w) ∈ U⊥,

f(PU(u+ w)) = f(PU(u)) + f(PU(w)) = f(u) + 0 = f(u)

PU(f(u+ w)) = PU(f(u)) + PU(f(w)) = f(u)
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So PUf = fPU , as required.
Second, suppose PUf = fPU . Let u ∈ U . We can write f(u) = ũ+w̃, with ũ ∈ U, w̃ ∈ U⊥.
Then

fPU(u) = f(u) = ũ+ w̃

PUf(u) = PU(ũ+ w̃) = ũ

ũ+ w̃ = ũ =⇒ w̃ = 0

So that f is invariant under U .
Now, let w ∈ U⊥. Let f(w) = uo + wo, with uo ∈ U,wo ∈ U⊥.
Then

fPU(w) = f(0) = 0

PUf(w) = PU(uo + wo) = u0

=⇒ 0 = u0

So that f is invariant under U⊥ also. (DL)
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Practice Math 25a Midterm #2 Solutions

Eric Peterson

Problem 1. Let (a, b) and (c, d) be two vectors in R2.

1. Show that (a, b) and (c, d) are linearly dependent if and only if ad− bc = 0.

2. Consider the map ϕ : L(R2,R2)→ R described by

ϕ

((
a b
c d

))
= ad− bc.

Prove or disprove that ϕ is a linear function.

Solution. 1. If there is a linear dependence, then s(a, b) = t(c, d) for some s, t ∈ R not
both zero. By noticing that

ϕ((a, b), (c, d)) = ad− bc = −(cb− da) = −ϕ((c, d), (a, b)),

we see that the condition that ϕ is zero or nonzero is invariant under swapping the
vectors. So, we may as well assume that t is nonzero and express (c, d) as(

c
d

)
=
s

t
·
(
a
b

)
.

We thus calculate

ϕ

(
a b
c d

)
= ad− bc = a(sb/t)− b(sa/t) = 0.

Conversely, suppose that ad− bc = 0. Since (a, b) is not the zero vector, one of a or b
is nonzero.

• Suppose a 6= 0, so that we can solve to get d = bc/a. This expresses (c, d) =
(c, bc/a) = c/a · (a, b).
• Otherwise, suppose b 6= 0, so that we can solve to get c = ad/b. This expresses

(c, d) = (ad/b, d) = d/b · (a, b).
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2. ϕ fails to be a linear function. Consider the matrices(
1 0
0 0

)
,

(
0 0
0 1

)
.

ϕ applied to either matrix gives 0. However, ϕ applied to their sum gives 1.

Alternatively, ϕ(k ·M) = k2 ·ϕ(M) for a scalar k violates the usual scalar multiplication
condition. (ECP)

Problem 2. Let V be a vector space which decomposes as a direct sum of two subspaces
U,U ′ ≤ V , and set N = {ϕ ∈ V ∗ | ϕ(U) = 0}. Show that N is a subspace of V ∗ and that
V ∗/N is isomorphic to U∗.

Solution. To see that N is a subspace, we note that it is closed under sums — for ϕ, ψ ∈ N ,
we have (ϕ + ψ)(U) ⊆ ϕ(U) + ψ(U) = 0 + 0 = 0 — and under scalar multiplication — for
ϕ ∈ N , (k ·ϕ)(U) = k ·ϕ(U) = k · 0 = 0. Now, consider the inclusion i : U → V and its dual
i∗ : V ∗ → U∗. First, i∗ is surjective: any functional on U can be lifted to a functional on V
by extending by zero on the complement U ′. Hence, there is a factorization

V ∗ → V ∗/ ker i∗
∼=−→ U∗,

and we are left with showing ker i∗ = N . Expand the defintion:

ker i∗ = {ϕ ∈ V ∗ | i∗ = 0} = {ϕ ∈ V ∗ | ϕ ◦ i = 0} = {ϕ ∈ V ∗ | ϕ(U) = 0} = N. (ECP)

Problem 3. Let V be a complex vector space of finite dimension and let f : V → V be a
linear function. Prove there exists a basis (v1, . . . , vn) of V such that the matrix presenting
f is upper-triangular. (Feel free to assume that f admits an eigenvector.)

Solution. Begin by selecting an eigenvector v of f , which spans an invariant 1–dimensional
subspace U = 〈v〉. By induction, the operator f/U admits a upper-triangularization by a
basis (w2, . . . , wn) of V/U . Lift these to vectors wj = vj + U in V . The new list (v1, . . . , vn)
forms a basis for V , as they span V and the list has the correct length. The behavior of f/U
on wj (namely: f/U(wj) ∈ span{w2, . . . , wn}) shows that the behavior of f on vj has the
upper triangularity property: f(vj) ∈ span{v1, . . . , vj}. (ECP)

Problem 4. Prove that every operator on a finite-dimensional nonzero real vector space has
an invariant subspace of dimension 1 or 2.

Solution. As in the proof that complex operators admit eigenvectors (i.e., 1–dimensional
invariant subspaces), consider a vector v 6= 0 as well as the list

(v, fv, f 2v, . . . , fnv)
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for n = dimV . There is necessarily a linear dependence among this list, which we consider
as follows:

a0v + a1fv + a2f
2v + · · ·+ anf

nv = 0

(a0 + a1f + · · ·+ anf
n)(v) = 0

c(f − r1) · · · (f − rm)((f − h1)2 + k21) · · · ((f − h`)2 + k2` )(v) = 0,

where we have used the factorization theorem for real polynomials at the last line. Since
this whole product annihilates v, one of the factors must fail to be injective. In the case that
(f − rj)(w) = 0, we have a linear dependence in the list (w, fw), which gives an invariant
subspace of dimension 1, spanned by w. Alternatively, in the case ((f − hj)2 + k2j )(w) = 0,
we have a linear dependence in the list (w, fw, ffw), which gives an invariant subspace of
dimension 2, spanned by w and fw. (ECP)

Problem 5. Suppose u, v ∈ V and ‖u‖ = ‖v‖ = 1 and 〈u, v〉 = 1. Prove that u = v.

Solution. We want to show u− v = 0, so we calcuate ‖u− v‖.

‖u− v‖2 = 〈u− v, u− v〉
= 〈u, u〉+ 〈v, v〉 − 〈u, v〉 − 〈v, u〉
= ‖u‖+ ‖v‖ − 1− 1 = 0.

Since ‖u− v‖2 = 0 only for the zero vector, we are done. (ECP)
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Math 25a Midterm Solutions

Eric Peterson

Problem 1. Suppose v1, . . . , vm is a linearly independent set of vectors in V , and suppose
that w ∈ V is another vector. Show that if v1 + w, . . . , vm + w is linearly dependent, then
w ∈ span{v1, . . . , vm}.
Solution. Suppose there is a nonzero linear dependence:

k1(v1 + w) + · · ·+ km(vm + w) = 0.

Rearrange this for w:

k1w + · · ·+ kmw = −k1v1 + · · ·+−kmvm.

If k1 + · · · + km = 0, this gives a linear dependence among the vj, which we know to be
independent. Hence k1 + · · ·+ km 6= 0, and we can divide by it:

w =
k1

k1 + · · ·+ km
v1 + · · ·+ km

k1 + · · ·+ km
vm ∈ span{v1, . . . , vm}. (ECP)

Problem 2. For a subspace U ≤ V , recall that a functional ϕ ∈ V ∗ is said to annihilate
U if ϕ(U) = 0. The set of functionals satisfying this condition form a subspace U0 of V ∗.
Supposing that V is finite dimensional, prove

dimV = dimU + dimU0.

Solution. Consider the inclusion map i : U → V and its dual i∗ : V ∗ → U∗. The Fundamen-
tal Theorem of Linear Algebra gives

dimV ∗ = dim ker i∗ + dim im i∗.

First, note that i∗ is surjective: by picking a complement U ′ to U , we can lift any functional
on U to a function on V by extending by 0 on U ′. Hence, im i∗ = U∗ and dim im i∗ = dimU∗.
Second, note that ker i∗ = U0:

ker i∗ = {ϕ ∈ V ∗ | i∗ϕ = 0} = {ϕ ∈ V ∗ | ϕ ◦ i = 0} = {ϕ ∈ V ∗ | ϕ(U) = 0} = U0.

Hence, dim ker i∗ = dimU0. Tying these together gives

dimV ∗ = dimU∗ + dimU0.

Finally, the dimensions of finite dimensional spaces and their duals agree, so

dimV = dimU + dimU0. (ECP)
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Solution. Alternatively, we can choose a basis v1, . . . , vj of U and extend it to a basis
v1, . . . , vj, vj+1, . . . , vn of V . This gives rise to a dual basis v∗1, . . . , v

∗
n of V ∗, and we would

like to show that v∗j+1, . . . , v
∗
n gives a basis for the annihilator subspace U0. We already know

that this list is linearly independent, so we are left with showing

span{v∗j+1, . . . , v
∗
n} = U0.

(⊆:) The functionals v∗i are determined by

v∗i (vk) =

{
1 if i = k,

0 otherwise,

which in turn gives the formula

v∗i (v) = v∗i (a1v1 + · · ·+ anvn) = ai.

It follows that
v∗>j(u) = v∗>j(a1v1 + · · ·+ ajvj) = 0,

so that v∗>j ∈ U0.

(⊇:) Because the functionals above give a basis for V ∗, an arbitrary functional ϕ ∈ V ∗ can
be expressed as

ϕ = c1v
∗
1 + · · ·+ cnv

∗
n.

We can compute some of these coefficients: if ϕ ∈ U0, then ϕ(u≤j) = 0 and ϕ(u≤j) =
c≤j, hence c≤j = 0. This shows ϕ ∈ span{v∗j+1, . . . , v

∗
n}.

(ECP)

Problem 3. Let M be an n× n matrix with real entries, and let v be an eigenvector of M
with eigenvalue λ.

1. Prove that for all k ≥ 1, λk is an eigenvalue of Mk. Describe an associated eigenvector.

2. Suppose that M is furthermore nilpotent, meaning that M r = 0 for some r � 0. Prove
that 0 is the only eigenvalue of M .

Solution. 1. The base case of the induction is given in the problem hypothesis. Then,
consider

Mk(v) = M(Mk−1(v)) = M(λk−1v) = λk−1Mv = λk−1λv = λkv.

Hence, v is an eigenvector of Mk with eigenvalue λk.

2. If λ is an eigenvalue of M , then λr is an eigenvalue of M r. However, since M r = 0, its
only eigenvalues are 0, hence λr = 0. This is only soluable if λ itself is zero (since the
product, hence power, of nonzero numbers is nonzero). (ECP)
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Problem 4. Let f, g : V → V be two linear functions. Show that f ◦ g and g ◦ f must have
the same eigenvalues. This was misprinted on the exam. V should additionally be
assumed to be finite-dimensional.

Solution. For λ 6= 0 is an eigenvalue of f ◦ g, choose an associated eigenvector v with
fgv = λv. Then, set w = gv, which is nonzero because fgv = λv is nonzero, and consider
gf applied to w:

gfw = gfgv = g(λv) = λgv = λw.

Similarly, if λ 6= 0 were instead an eigenvalue of g ◦f with associated eigenvector v satisfying
gfv = λv, we would set w = fv 6= 0 and consider fg applied to w:

fgw = fgfv = f(λv) = λfv = λw.

In order to deal with the case λ = 0, we need the misprinted additional assumption. If
fgv = 0 · v = 0 and gv = w 6= 0, we can proceed as above to exhibit w as an eigenvector
of gf with eigenvalue 0. However, if w = 0, then we need to form some other candidate
vector w′ for which gfw′ = 0. If f is not injective, then f must have a nontrivial kernel, and
we can pick a nontrivial element of its kernel to use as w′. If f is injective, then by finite-
dimensionality it is also surjective, and hence v has a preimage w′ satisfying f(w′) = v. This
element then satisfies gfw′ = gv = 0. The other inclusion is shown identically, reversing the
appearances of the fs and gs in this argument.1 (ECP)

Problem 5. Suppose f : V → V is a linear function on a finite-dimensional inner product
space such that ‖f(v)‖ ≤ ‖v‖ for every v ∈ V . Prove that f −

√
2 · id is invertible.

Solution. The contrapositive is easier to prove. If f −
√

2 fails to be invertible, then there is
a nonzero element v in its kernel, which is an eigenvector of f of eigenvalue

√
2. This element

satisfies ‖fv‖ = ‖
√

2v‖ =
√

2‖v‖, which shows ‖fv‖ 6≤ ‖v‖ for this choice of v. (ECP)

Solution. Alternatively, for a nonzero vector v we have ‖
√

2v‖ =
√

2 · ‖v‖ and ‖fv‖ ≤ ‖v‖.
The triangle inequality forces

‖fv −
√

2v − fv‖ ≤ ‖fv −
√

2v‖+ ‖fv‖,

or
‖
√

2v‖ − ‖fv‖ ≤ ‖
√

2v − fv‖.
Then, the assumption gives

(
√

2− 1)‖v‖ = ‖
√

2v‖ − ‖v‖ ≤ ‖
√

2v − fv‖,

so that ‖v‖ 6= 0 forces ‖(
√

2−f)v‖ 6= 0. This operator is therefore injective, hence invertible.
(ECP)

1Without this assumption, consider integration and differentiation of polynomials. Differentiation has a
kernel, the constant polynomials, but integration is injective but not surjective — it’s even a right-inverse to
differentiation. This means that

∫
dx◦d/dx has a kernel, hence an eigenvector of weight 0, but d/dx◦

∫
dx = id

has no kernel, hence no eigenvectors of weight 0.
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Problem 6. Suppose u, v ∈ V for an inner product space V . Prove that ‖au + bv‖ =
‖bu+ av‖ for all a, b ∈ R if and only if ‖u‖ = ‖v‖.

Solution. Expand the two inner product formulas:

‖au+ bv‖ = 〈au+ bv, au+ bv〉 = 〈au, au〉+ 〈au, bv〉+ 〈bv, au〉+ 〈bv, bv〉
= a2‖u‖2 + b2‖v‖2 + abRe〈u, v〉,

‖bu+ av‖ = 〈bu+ av, bu+ av〉 = 〈bu, bu〉+ 〈bu, av〉+ 〈av, bu〉+ 〈av, av〉
= a2‖v‖2 + b2‖u‖2 + abRe〈u, v〉.

(⇒) Specialize the above expressions to a = 1 and b = 0 to get ‖u‖2 = ‖v‖2.

(⇐) If ‖u‖ = ‖v‖, then the first two terms of each line match. The third term always
matches, independent of assumption on u and v. (ECP)
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Scratch work.
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Scratch work.
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