Hi, everyone,
I was hoping to have time for an example today. I didn't, so here are three:

1. First, a warm-up. Consider the linear map $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
g(x, y)=x-y .
$$

Both the left and the right have standard bases: \mathbb{R}^{2} is spanned by $v_{1}=(1,0)$ and $v_{2}=(0,1)$, and \mathbb{R} has basis $w_{1}=(1)$. In order to compute the matrix representation of g, we apply g to v_{1} and v_{2} and represent the result in terms of w_{1} :

$$
\begin{aligned}
& g\left(v_{1}\right)=g(1,0)=(1)=1 \cdot w_{1} \\
& g\left(v_{2}\right)=g(0,1)=(-1)=-1 \cdot w_{1},
\end{aligned}
$$

and hence the matrix representation of g has two columns and one row:

$$
\left(\begin{array}{ll}
1 & -1
\end{array}\right) \text {. }
$$

2. Now consider the linear map $d / d x: V_{2} \rightarrow V_{1}$, where V_{2} is the vector space of real polynomials of degree at most 2 (as considered on the homework) and V_{1} is the vector space of real polynomials of degree at most 1 . We would like to give a matrix presentation of $d / d x$.
(a) Pick the basis $\left(1, x, x^{2}\right)$ of V_{2} and the basis $(1, x)$ of V_{2}. Were going to end up computing a map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, which is represented by a matrix M with 3 columns and 2 rows. To figure out the columns, we compute

$$
\begin{aligned}
& M\left(e_{1}\right)=\frac{d}{d x}(1)=0=0 \cdot 1+0 \cdot x, \\
& M\left(e_{2}\right)=\frac{d}{d x}(x)=1=1 \cdot 1+0 \cdot x, \\
& M\left(e_{3}\right)=\frac{d}{d x}\left(x^{2}\right)=2 x=0 \cdot 1+2 \cdot x,
\end{aligned}
$$

and so we get the matrix

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

If we had some other polynomial $p(x)=1+x+x^{2}$ in V_{2}, we could compute the map $d / d x$ using M (and not using direct information about differentiation!) by presenting this vector in terms of the basis.

Start by writing the polynomial as a linear combination of basis vectors:

$$
\frac{d}{d x}\left(1+x+x^{2}\right)=\frac{d}{d x}\left(1 \cdot 1+1 \cdot x+1 \cdot x^{2}\right)
$$

Now remember that $d / d x=\varphi_{V_{1}} \circ M \circ \varphi_{V_{2}}^{-1}$:

$$
=\varphi_{V_{1}} \circ M \circ \varphi_{V_{2}}^{-1}\left(1 \cdot 1+1 \cdot x+1 \cdot x^{2}\right)
$$

To evaluate $\varphi_{V_{2}}^{-1}$, we strip off the coefficients in the linear combination to form a vector in \mathbb{R}^{3} :

$$
=\varphi_{V_{1}}\left(M \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right)
$$

Then apply the matrix M to get a vector in \mathbb{R}^{2} :

$$
\begin{aligned}
& =\varphi_{V_{1}}\left(\binom{0}{0}+\binom{1}{0}+\binom{0}{2}\right) \\
& =\varphi_{V_{1}}\binom{1}{2}
\end{aligned}
$$

Finally, convert that back at a polynomial using the other basis:

$$
=1 \cdot 1+2 \cdot x=1+2 x
$$

(b) Lets do this again, but with a funny basis. You know from your homework that $\left(1,1-x, 2-3 x+x^{2}\right)$ and $(2, x)$ also form bases for V_{2} and V_{1} respectively. Again, we figure out the columns:

$$
\begin{array}{r}
M\left(e_{1}\right)=\frac{d}{d x}(1)=0=0 \cdot 2+0 \cdot x \\
M\left(e_{2}\right)=\frac{d}{d x}(1-x)=-1=\frac{-1}{2} \cdot 2+0 \cdot x \\
M\left(e_{3}\right)=\frac{d}{d x}\left(2-3 x+x^{2}\right)=-3+2 x=\frac{-3}{2} \cdot 2+2 \cdot x
\end{array}
$$

so that the matrix representation is

$$
M=\left(\begin{array}{ccc}
0 & -1 / 2 & -3 / 2 \\
0 & 0 & 2
\end{array}\right)
$$

Given the same polynomial $p(x)=1+x+x^{2} \in V_{2}$, we calculate $\frac{d}{d x}\left(1+x+x^{2}\right)$ by first calculating the linear combination

$$
1+x+x^{2}=3 \cdot 1+-4 \cdot(1-x)+1 \cdot\left(2-3 x+x^{2}\right)
$$

so that

$$
\begin{aligned}
\frac{d}{d x}\left(1+x+x^{2}\right) & =\varphi_{V_{1}}\left(M \cdot \varphi_{V_{2}}^{-1}\left(1+x+x^{2}\right)\right) \\
& =\varphi_{V_{1}}\left(M \cdot\left(\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right)\right) \\
& =\varphi_{V_{1}}\left(3 \cdot\binom{0}{0}+-4 \cdot\binom{-1 / 2}{0}+1 \cdot\binom{-3 / 2}{2}\right) \\
& =\varphi_{V_{1}}\binom{1 / 2}{2} \\
& =1 / 2 \cdot 2+2 \cdot x \\
& =1+2 x
\end{aligned}
$$

I hope this clarifies whats going on with representing linear maps as matrices. I recommend as you read this to draw those square diagrams and look at how were pushing these various elements around in each step, as in:

