Incraductian/Summary

Office hours: $32 / \mathrm{hSC}, T 1-2 \mathrm{pm}, \omega 11-12 \mathrm{pm}$.
CAs'. Thayer Anderson, Davis Lazooki, Haudong Park, Rohil Pracael.
Gracles:- Homewarta due Wednesday moning, befove clare begine, separated by CA. (25%) LaTex

- A midterm: 10/26, u class (25%).
- Final exam: $12 / 10$ 9am (50%).

As have affice hour. Weethy probleve night: M8pme, Leverett.
A function s "inear if $T(c \cdot x)=c \cdot T(x)$ and $T(x+y)=T(x)+T / y)$.
E_{x} : The ouly sweh $f^{\underline{M}} \mathbb{R} \rightarrow \mathbb{R}$ are $T(x)=k \cdot x$ for one $k \in \mathbb{R}$.
Ex's: A rotatiour of \mathbb{R}^{2} :
$\frac{\text { Evaluatime of polyunmials: }}{T(f)=f(1)}$.

Derivative: $\frac{d}{d x}(f(x)+g(x))=\frac{d f}{d x}+\frac{d f}{d x}$, and $\frac{d}{d x}(c \cdot f(x))=c \cdot \frac{d f}{d x}$.
Linear alghira is aboet stud ying chere T is the eqreatione
they appear in: $T(x)=y$ « how cau we solve tho ${ }^{2} f_{\text {a }}$ fixed y ? $T(x)=x<\sim$ how about this, with x on botheiver?

Gausiviau eimunsticu $T(U) \leq U$
(1) mantrix rome elimentatation. bavic structure of vuto paces.

Main goale for the clais:
\qquad the Spectral Mhensemes + SVD, I) geveratized eijeunvalue, guadinatic fir. Torday (3) 3 mal form.

Linear algehna m it own right: tangible, succenful mothematice.
Linear algotra for moth. appx. calculm next rennecter.
Proof-writing. Manipulating def ${ }^{m}$. Math as simulation t subsituate.

Proof techniques I
Major goal of this class: learning to write profs. Proofs divide into two main campa: algebmic + ana haptic. There are a B. To start menill consider some baric, universal techniques.

Mathematic e is about deigning models + thee anguine about their Behaviors. Its important to become a good + flexible debater, and to be eager to comines all point of view mothemaitice is very rigid, but mathenraticioul are highly fallible.
Ex: A ser is divisible by 9 exactly if the cam of its decimal digits.
Fist, example: $81=9 \cdot 9$, and $8+1=9=9.1$.

$$
693=9 \cdot 77 \text { and } 6+9+3=18=9 \cdot 2 \text {. }
$$

Meanwhile, $500=4 \cdot 5^{31}$, and $5+0+0=5$.
not allowed to rick an example
symbols.
Pf: Suppose that n : ${ }^{\text {a pox integer. It decimal expansion is }}$
The digital sum is then $\quad \begin{aligned} & n=10 a_{k}+ \\ & s(n)=a l\end{aligned}$
$s(u)=a_{h}+a_{h-1}+\cdots+a_{l}+a_{0}$.

$$
\left.\Delta:=n-s(n)=\left(10^{k}-1\right) a_{k}+\left(10^{k-1}-1\right) a_{k-1}+\cdots+(10-1) a_{1}+11-1\right) a_{0}
$$

This is divisille by 9 , since each summand ha a factor like $99 \ldots 99$, no most er won

Break into
care: the
two "direction" thu

We then have $n=\Delta-s(u)$ and $s(n)=n-\Delta$. So if
shul) is div. by 9 ar
n is div. by 9
shul indivi. 9 a
because the ium/differeuce of two thinge dimeible by 9 is again co.
Thought experiment (Watson selection tank):
You are told: every card has a number an ave sidle and a color on the other. If the number is even, then the cole nett be red [7] How many card do you need to check to verify the claim quiderlined?
Underage drinking s illegal. If yare drum, you muts $\underset{\geq 21}{\geq 21}$

This is meant to illustrate the centra positive:
logically . If you are drunk, then you must be ≥ 21. equivalent statement. If you are not ≥ 21, then you mun not be drench.

However, sometimes one a easier than the other.

Ex: Show that if $x y$ and $x+y$ are even, then x and y are even.
HEDE IS THE Pf:. We instead how that if x and y ane not both even, the en CONTRAPOSTTNE $\longrightarrow x y$ and x ty will not both he even.

Case 1: x even, y odd means $x+y$ is odd. Core 2: Formally, relentisel, since Care 2: x odd, y even near $x t y$ so dd. $x t y=y t x$. This is conuctinuer phrased on "Assume one of the two sal ail the the even. Without lou, we may tribe x off $+~ y ~ e v e n . " ~$ Case 3: x and y both old mean $x \cdot y$ is add.

Interstitial examples'.
Also do a direct version of this. $t \Rightarrow$ same parity

x	y	$x+y$	$x y$	
2	1	3	2	
3	4	7	12	old!
8	7	12	35	
8	6	14	48	\leftarrow evan!)

Another powerful proving bol Go statement induced by X is induction.

Pf: For $u=1, \quad 1=1 \cdot(1+1)^{(2-1)} / 6 . \quad /(2 ;+1)$
Assume $1+4+9+\cdots+j^{2}=i(j+1) /$ of co me j.
Then $1+4+9+\cdots+j^{2}+(j+1)^{2}=\frac{j(i+1)(24)}{G}+(j+1)^{2}$

$$
=(i+1)(i(2 ;+1)+6(;+1))=i+1\left(2_{1}^{2}+j+6 ;+6\right)=\frac{(j+1)(j+2)(2 i+3)}{1}
$$

Yihoug: Fri Ilam-12pm
Proof technique II
Today we talk absent taro move complicated apus of proanuriting: quantification and contradiction.
We sew quantificatitian yecterday: when we towed that all nuteger a
 about general? is a quantifier. There na hond hued of quantifier, ale of intend: behavior.

There is a solution x to the equation $x^{2}+x=0$.
called an existential quantifier. These ore claims about examples, (Pf: Pick $x=0$ or $x=-1$.) and they are orle shaft.
These are interrelated:
If not all \times satisfy P, then there must exact an x nut ratifying P.
If there chou nd exit an x satisfying P, then all x mut not satisfy P.
Moving "not" part the quantifier changer it! The "the font of proof by comiterexcauple: if you want bo chow that not all x have property P, then you need exhibit only ave such x.
$\left\{\right.$ Ex: Falsify the Hatement chat for any $y \in \mathbb{R}$ there 1 an $x \in \mathbb{R}$ with $y=x^{2}$.

If we select $y=1$, then any x has x^{2} nonnegative, hence $y \not x^{2}$. D
IV 1 also poxiblle to prove exatemce statement without actually exhibiting a particular value.
Ex: There exalt irrational a ane b with a^{b} rational.
Pf: Consider $(\sqrt{2})^{\sqrt{2}}$. If it is notional, we are dore. If it is irrational, ret $a=(\sqrt{2})^{1 / 2}$ and $b=\sqrt{2}$, so that

$$
\left((\sqrt{2})^{\sqrt{2}}\right)^{\sqrt{2}}=(\sqrt{2})^{\sqrt{2} \cdot \sqrt{2}}=(\sqrt{2})^{2}=2 . \quad 1
$$

Buried in here is an idea chat P_{1} either true for x or it il false, and there Is no third course. (This is different from chmonetrating either of there, which is quite subtle.) This is envalty iommorized ar raping that if P is not-false, thee e it is tine, and converse h y.
This leads to a different hind of prod technique: contradiction.
The ideas that if some premise leach you b say that something else mont be both true and false, then your premise itself must have been unsound
Ex: There are infinitely many prime numbers.
Pf: Sunpon otherwise, that there are just finitely many, named $p_{1}, p_{2}, \cdots, p_{k}$. We then form the number $N=\left(p_{1} \cdot p_{2} \cdot \cdots p_{k}\right)+1$, which is not divisible ha p_{j} for avi;
This meancthat either N_{1} prime land not an the list) or that N decompress into primes not an the list. Tu either case, we have shown our complete list of primer to be incompletea contradiction. Our initial allumptian must have been wrong: it must instead by the care that there are $\infty \frac{y}{7}$ many prime number.

Functions, properties, cardinalities
We have ane more foundecticual issue to adorer before un begin linear algebra in earnest.
We will avoid actually saying what a set is. Suffice it to say that it is a collicticue of elements for which membership

$$
2 \in\{n \in \mathbb{N} \mid n \text { is even }\} \subseteq \mathbb{N} \text {. }
$$ caa be texted, e.g. $2 \in\{n \in \mathbb{N} \mid$ u is evan $\} \leq \mathbb{N}$. 3中

A function $f: A \longrightarrow B$ s an assignment of element of A to thou of B. That is, for any clement $a \in A$ there is a single corresponding element $f(a) \in B$, called ito image.
Functions tend to serve two parpons: operation and tranmognsificatian.
Ex: The operation "t" m \mathbb{R} can be thought of or a friction $t: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, where " $\mathbb{R} \times \mathbb{R}^{\prime}$ indicates the ert of pain of real number. You can also specialize this to get a function $s(x)=x+1$ by setting $y=1$. There's also $p(x)=x \cdot x$, which comes frame pecializing $\therefore: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ to $x=y$.
Ex: The function $\cos : \mathbb{R} \rightarrow \mathbb{R}$ plays more of the second role: it taker in an angle value (thought of ar a real numbers) and giver ant a motto of length (thought of ar a real number.
Thee functiaur have certain properties which tell you interesting information about them.

- Injectivity: A function r infective if no two in nub give the same output. For transmogrification, the sa loishernees, that you can recover the input unispuly frame the out pit. (cos is
 about solution: s is miectiv, so $x+1=s(x)=y$ hat a single solution. p is not, so $x^{2}=p(x)=y$ may have many.
- Serjectivity: This s cha statement that every output has at bent one input realizing it. Far trausmognisicitians, then 1 a handel of efficiency: thence's no "waited space" in the coclomain of imparistle values. Far opecostame, then is agar abort solutions. $x+1=(x)=y$ in curiective, so it is always ponille to solve this eq" for x, no matter what y s. $x^{2}=p(x)=y$ is not, so there are ' y with no solution in x..
- Bijectivity: Simultanemily injective and serjective. Thee are "perfect dictionary" traumigrificatione, or equations with exactly 1 volution for any choice of y.
Every function can be broken into these parts in the following way:

(1) If the function is not invective, then we can rethnt its codomain to put the value e it does take en. In fum, this subset injects into the original codomain.
(2) If the function is not infective, we cave collect together all the elements of the domain that' give the same value int different culet. These set are carl bs partition the clomeaing meaning they do not overlap + yet their minus s all of the domain. There is a cupjective map aligning each element to the subset it belange to.
(3) Finally, the original function definer a new function ar at the' bottom: given asset, the $f^{\prime \prime}$ tater arc the same value on amy of it member, 6 gins an element of the restricted codruain. This map i subjective aud imjestive, hence bijective.
This a good rep" of what functions "do". They forget a little infonuation,s then their ry sent what's left inside of the codomain according to sone rule.

First, na stray example frame last time

Vector Space
Remember that we are intereted-in function. T:V $\rightarrow W$ satisfying equation like $T(h \cdot u)=k \cdot T(u)$ and $T(u+v)=T(u)+T(v)$, where $4 V_{1}$ and ω are fancy co/domaine. We need bo make sense of "+ "and."." unide of V and ω.

Ex: Represent a point in the plane on a cosrduate pair (x, y). Thieu rotation by 90°,s specified by $T\binom{x}{y}=\binom{-y}{x}$ same objects Defining + and: component wire $\left(\begin{array}{l}l \\ x \\ y\end{array}\right)+\binom{\omega}{z}=\binom{x+w}{y+z}, k \cdot\binom{x}{y}=\binom{k x}{k y}$, we find that T is a linear map. However, you can wee that the op H t and -are kind sicouppicated! different!
Def: A field $k x$ a set with,+- , and I ~ defined an nonzero element satrifyng comm., aroc., + dithibatividy.
$E \underline{E}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / p, k$ Nom-ex: $\mathbb{N}, \mathbb{R}, \mathbb{R} / 4$.

Ex: \mathbb{R}^{n} and 4^{n}. \mathbb{R}^{∞}. Pohynomials. Pdynimials of degree x.
Pohnomials vauishing at 0 . Pohnnomials vanshing at 1.
Functians $[0,1] \rightarrow \mathbb{R}$.. Functian valued ine a vector yace. \notin over \mathbb{R} and \mathbb{R} over \mathbb{Q}.

Pictoral rep n of vector aritlimitic an \mathbb{R}^{2} and \mathbb{R}^{3}.

Suspace $(1, c)$:
Inplicit in ous diccucriaus otinu for has been a notion of a subset:
a subret $Y \subseteq X$ is a set sit. ecoch element $y \in Y$ s abeady alw an eft. $Y \in X$.
This is a statement abrict cize: X is at leat as lagge as $Y_{;}$;
Thize often ducnised by propertie. $\{u \in \mathbb{N} \mid$ n'is diveby 2$\} \subseteq \mathbb{N}$; the subut of evere notural number.

Theris a corcupending notum for vector sacei: $U \subseteq V$ is subspace of V if Ul is, itreff, a veitor pace with the cance op as an V. a cabrot and
$E x: \quad\left\{(x, y, y, z) \in \mathbb{R}^{3} \mid x=y\right\} \subseteq \mathbb{R}^{3}$.
Polynomine vaunhing at $0 \subseteq$ all polynomials

This is beanie $(5,0,0)$ and $(5,10,12)$ are elcimect of the rub ret, but $(5,0,0)+(5,10,32)=(10,10,32)$ is not.

Set have varians inturesting op su them sibe interection, misu, tionplemen These have analogaeisin vector ppacer, bet their behavior a uare conples.
Intersectian. The intersection of 2 suhpaces a subspace.
Unan: The mave of 2 subipaces U_{1}, U_{2} is a iubipace iff are contains the other. (this os honiework) This ho a replacuntar though: the sum is $u_{1}+u_{2}=\left\{u_{1}+u_{2}\left\{u_{1} \in \mathcal{U}_{1}, u_{2} \in U_{2}\right\}\right.$.

Leme This st the smathet sulipace cinctaining U_{1} and U_{2}. Pf:

Pf: It is a subspace: $\left(u_{1}+u_{2}\right)+\left(u_{1}^{\prime}+u_{2}^{\prime}\right)=\overbrace{\left(u_{1}+u_{1}^{\prime}\right)}^{\varepsilon u_{1}}+\overbrace{\left(u_{2}+u_{2}^{\prime}\right)}^{\in U_{2}}$, and $\therefore h \cdot\left(u_{1}+u_{2}\right)=k u_{1}+k \cdot u_{2}$ "Smallest". mean that any other subspace W with $U_{1}, U_{2} \subseteq U$ hat $U_{1}+U_{2} \leq U$. This s clear too. For $u_{1}+u_{2} \in U_{1}+U_{2}, u_{1} \in U_{1}$ and $u_{2} \in U_{2}$ ane hence $u_{1}, u_{2} \in \mathbb{U}$. Then $u_{1}+u_{2} \in U_{h} b b c W$ a subspace, and $U_{1}+U_{2} \subseteq U_{1}$. I

Direct sums: A particularly nice kind of sum of subspaces is when $U_{1} \cap U_{2}=0$.
Incthr care, any $v \in U_{1}+U_{2}$ has a unique representative ar $v=u_{1} t u_{2}$.
Pf: If $v=u_{1}+u_{2}$ and $v=u_{1}^{\prime}+u_{2}^{\prime}$, then $v-v=u_{1}+u_{2}-u_{1}^{\prime}-u_{2}^{\prime}=0$, and $\underbrace{u_{1}-u_{1}^{\prime}}_{\in u_{1} \neq 0}=\underbrace{u_{2}-u_{2}^{\prime}}_{\in u_{2}, \neq 0}$. This violates the interrestian condition. D

This is a kind of "disjoint min" condition: Un + Hz have no " overlap.
Complementatianc: For $A \subseteq X$ a subset, there il another miguel net $X=A$ such that $A+X, A$ are disjoint and $A \circ(X-A)=X$.

This is kind of true for veitorpaces - what fails is miccity.
Proving experience in. generality is more trouble than it's worth you need the Axiom of Choice: Instead, let ts look at how unicily fails.

Ex: $U:=\left\{(x, y) \in \mathbb{R}^{2} \mid x=y\right\} \subseteq \mathbb{R}^{2}$.
One complanut: $\omega_{x}=\left\{(x, y) \in \mathbb{R}^{2} \mid x=-y\right\}$.
Pf. If $x=y$ and $x=-y$, then $x=y=0$,

so $U \cap W=0$. Given $(s, t) \in \mathbb{R}^{2}$, we solve $x t^{x^{\prime}}=s ; x-\frac{x^{\prime}}{y}=t$ to get $x=\frac{s+t}{2}, x^{\prime}=\frac{s-t}{2}$.
$\left.\left.E x \cdot \omega=\xi\left(\frac{x}{y}, y\right) \in \mathbb{R}^{2} \right\rvert\, x=0\right\}$. Pf: Again, Un $\omega=0$. Fan $(s, t \mid$, we find $\binom{s}{t}=\underset{\tilde{u}}{\binom{s}{s}}+\underset{\tilde{\omega}}{\binom{0}{t-s}}$

Finite-dimencianal vector ipacel (2.*)
Lart time we skirted around the exatence of complements of vector subspacer. Hereis a naive approablu contrueting a complement which will be of interent is air
Procelure ©Start with $=$ a subspace $U \subseteq V$ aul $~ W=O_{3}$.
(1) If $U+\omega \neq v$, there is some mising vector $v \in V(U+\omega)$.
 the smallert subrpace cortaining v.
(3) Go haik to (1).
\rightarrow If not, then wire done: $U \cap \omega=0$ aud $U+\omega=V$.
WARNING: THIS HAY NOT TERMINAJE IF V IS. TOO LARGE"II the subspace W we constreet ham a very particular form:

$$
W=\left\langle v_{1}\right\rangle+\left\langle v_{2}\right\rangle+\cdots+\left\langle v_{n}\right\rangle=\left\{c_{1} v_{1}+\cdots+c_{n} v_{n} e_{j} \in \mathfrak{k}\right\}
$$

where v is the vecter picked wis the ith time throngh the lagp.
Def: ω is called the span of $\left(v, \ldots, v_{\text {min }}\right.$. A particulardement $\omega=c_{1} v_{1}+\cdots+c_{n} v_{n}$ is culled a linear combinatain of $\left(v_{1}, \ldots, v_{n}\right)$.

There is an ivteresting edge case of thi al genithime if $U=0$, then is complement should be all of V. However pe the a govithuc present \forall in a special form: $V=\left\langle v_{1}\right\rangle+\left\langle v_{2}\right\rangle+\cdots+\left\langle v_{n}\right\rangle$. If the alfasithm terminater, V is called finite dinenenional (of dimensioni n).

Ex: $\mathbb{R}^{2} \cong\langle(1,01\rangle+\langle(0 ; 1)\rangle$.
\{polynomials $\}$ s not finite dimemianial. ($\left.1, x, x_{1}^{2}, x_{1}^{3}, \ldots\right)$
\{pilynomial of degree $\leq x\}=\langle 1\rangle+\langle x\rangle+\cdots+\left\langle x^{u}\right\rangle$ hal dimenvian $(n+1)$.

There is a flaw in using this algorithm al a definition: it is non deterministice, meaning that it may behave differently based on what V_{j} is chosen at each step. This in wary ing.' dir it sometimes terminate t sometime not? I the conclude ing number a always the same? We will have to wart far a while ta see thess.
Lem:. A linear dependence is a nonzero linear coubinaticue $c_{1} \omega_{1}+\cdots+c_{0} \omega_{d}=0$. Suppose c jor nonzero then $\operatorname{span}\left(\omega_{,}, \ldots, \omega_{d}\right)=\operatorname{span}\left(\omega_{1}, \ldots, \omega_{j=1}, \omega_{j+1}, \ldots \omega_{d}\right)$, with wo reinored.
Pf: Automatically, $B \subseteq A$. To we $A \leq B$, note that

$$
\omega_{j}=\frac{1}{c_{j}}\left(-c_{1} w_{1}-\cdots-c_{j-1} w_{j-1}-c_{j+i} \omega_{j+i}-\cdots-c_{l} w_{d}\right)_{\text {, }}
$$

which lots us write any element $a \in A$ as

$$
\begin{aligned}
& a=h_{1} \omega_{1}+\cdots+2 d \omega_{d} \\
& =h_{1} w_{1}+\cdots+k_{j,} w_{j}-1+k l \quad \int+h_{j}+\omega_{j+1}+\cdots+2 d w_{d} .
\end{aligned}
$$

This ide not involve wis I
Rem: Being linearly independent is the same ar $\left\langle\omega_{1}\right\rangle+\cdots\left\langle\omega_{0}\right\rangle$ being a direct sum.
Car. The length of any linearly independenaent list \leq
the length of any spaniuing late ω_{2}
PF.OStart with ($\omega_{1}, \ldots, \omega_{d}$) and $\left(v_{1},-, v_{n}\right)$
(2) Prepend the fins v-vector to the w list.
(3) There is a dependence, not moving the vs. Use chis to eliminate a w-vector.
(4) Repent.
(E any finite set of
Eventually, youll rum out of v's, before you run out of w'r.
That means $u \leq d$. I
Cor: The algenithme give the came n no matter what.
If: If you have v_{1}, \ldots, v_{n} and $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$, , then $n \leq n^{\prime}$ and $n^{\prime} \leq n$.

More an the crmensian algorithm'. (2,*)
We can squeeze some more out of the rear frame last timer?
If $U \leq V$ a a subspace $+V_{1}$ finite dime, them so is U : Pf. Rum the algavithm on U and on V. The list remelting from U is linearly independent tin V) and the list frame V span V. The Lemma -hour last time says leigh par \geq length li. a (Ii fact $\operatorname{dim} U \leq \operatorname{dim} V_{\text {. }}$)
I've been obtuse and avoided giving you so me ireful vocabulary: a basis for V, is a ret that is both livecorly indepenelent aide spans V. (The list resulting from the a gurithme si a basis for the: complementary subspace.)

Remeforcing ex. $\{(1,0),(0,1)\}$ is a ban for $\mathbb{1 1}^{2}$. $\sqrt{\text { none of }}$

Len: Any spanning lit cu be shortened to a basis.
Pf: (1) Start with $=1$.
(2) If $v ; i \operatorname{span}\left\{v_{1}, \ldots, v_{j-1}\right\}$, then discard v_{j}. Other wise keep it and continue to the next j
At the enid, the rest of the list will still span V. It'r now linearly independent: if there were a dependence, then there would be a last nonzero coefficient in the dependence: That would vidate step (2) at that stage. D

Lem: Every li. list of vectors in a trite dune V extends to a basis of V.
Pf: Tate: $\left.U=\operatorname{span}\left\{u_{1}, \ldots, u_{0}\right\}\right\}$ to be the san of the $1:$. lit. Use the complementary a lgenithme to find $\omega=\left\langle v_{i}\right\rangle+\cdots+\left\langle v_{n}\right\rangle$.
Then $V=U+\omega=\left\langle u_{1}\right\rangle+\cdots+\langle u d\rangle+\left\langle v_{1}\right\rangle+\cdots+\left\langle u_{n}\right\rangle$, and His is a direct sun because the lists are l. aud $\dot{L} \omega=0$.

Lem: If $\left\{v_{1}, \ldots, v_{u}\right\}$ is 1.i. and $\operatorname{dim} V=u$, then $\left\{v_{x}\right\}$ w: a band. Pf: Extent it to ain but it's already leupth u' So no new vectors are added. I
Lem:. If $\left\{w_{1}, \ldots, \omega d\right\}$ is spanning and $\operatorname{dim} V=d$, thin $\left\{w_{*}\right\}$ a a ann. Pf: It can be reduced to a bais - hut it's already length d!. So, no vectors can be erased.
\rightarrow Avar 2.43
Lem: For $U_{1,}, U_{2} \leq U_{1}$ we have $\operatorname{dm}\left(U_{1}+U_{2}\right)=\operatorname{dm} U_{1}+\operatorname{dm} U_{2}-d_{m}\left(U_{1} \cdot U_{2}\right)$ Pf: Use the a gonithm to build a bairns for $U_{1} \cap U_{2}$. Compiler it ar a li. set in U_{1} ane U_{k} separately, and extend it to a barr $\left\{u_{1}, \ldots, U_{d}, V_{1}, v_{n}\right.$? of U_{1} and $\left\{u_{1}, \ldots, u_{d}, w_{1}, \ldots, w_{m}\right\}$ of U_{2}. We claimithat the: combined fist $\underbrace{\left\{u_{1}, \ldots, u d\right.}_{U_{1}+U_{2}} \underbrace{v_{1}, \ldots, U_{1}}_{\text {new to }}, \underbrace{v_{1}, \ldots, U_{m}}_{\text {new to } U_{2}}\}$ is a Saris for $U_{1}+U_{2}$.
It clearly spans. Suppose there were a linear dependence.

$$
\begin{aligned}
& \quad a_{1} u_{1}+\cdots+a_{2} u_{d}+b_{1} v_{1}+\cdots+b_{n} v_{n}+c_{1} w_{1}+\cdots+c_{m} w_{m}=0 . \\
& -\underbrace{a_{i} u_{1}+\cdots+u_{2} u_{d}}_{\epsilon u_{1} \cap u_{2}}+\underbrace{b_{1} v_{1}+\cdots+b_{n} v_{n}}_{\in u_{1}})=\underbrace{c_{1} w_{1}+\cdots+c_{m} w_{m}}_{1} .
\end{aligned}
$$

Hence $c_{1} w_{1}+\cdots+c_{m} w_{m}=d_{1} u_{1}+\cdots+d_{d} u_{d}$. Subititutry thin back: $a_{1}^{\prime} u_{1}+\cdots+a_{d}^{\prime} u_{d}+b_{1} v_{1}+\cdots+b_{n} v_{n}=0$; but thu 䓪 lat is lii..

Linear maps + Kernels $(3 . A-B)$
Finally, we tore dur attention to how vector pacer relate to ave another through linear maps. One mire time:

Def. $: A f^{n} T: V \rightarrow W$ a linear $(T, \omega$ vector spaces when $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$ and $T(h \cdot v)=h-T(v)$.

Ex:(1)T: $\mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $T(x, y)=x-y$, as
$T^{\prime}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ Given $m y(x, y)=y$.
(2) $T:\{$ ply nomials $\} \longrightarrow \mathbb{R}$ given by $T(f)=f(0)$, or $T^{\prime}:\{$ orly nownials $\} \rightarrow \mathbb{R}$ given by $T(f)=f(1)$.
The baric op ns an linear functions are:
(1) Addition: given $T_{1}, T_{2}: V \rightarrow \omega$, we can form $\left(T_{1}+T_{2}\right)(v)=T_{1}(v)+T_{2}(v)$, which is also /inear.
(2) Scaling: given $T: V \rightarrow \omega$ and $k \in K$, we can forme $(k \cdot T)(v)=k:(T(v))$, which is also linear.
(3) Compsixtan! given $V \xrightarrow{T} \omega \xrightarrow{T^{\prime}} \omega^{\prime}$, we ail compose $(T!0 T)(v)=T^{\prime}(T(v)) \in \omega^{\prime}$ do get a linear map.
These play nicely with each other. For instance, o distributed over t.
There are ale ${ }^{2}$ natural subspaces associated to T :
Def: The herne of $T: V \rightarrow W,\{v \in V \mid T(v)=0\} \subseteq V$.
It is subspace. The image of T is $\left\{\omega \in \omega / \exists v \in V\right.$ with $\left.T_{v}=\omega\right\}$ It, too, is a mbipace.
$\frac{\operatorname{limker} \text { (dim } V \text { /dimim }}{1 \hookrightarrow 2 \xrightarrow{\longrightarrow}}$
$E_{x}:(1) \operatorname{her} T=\left\{(x, y) \in \mathbb{R}^{2} \mid x-y=0\right\} \subseteq \mathbb{R}^{2}$, live $\leftrightarrow \mathbb{R}^{2} \rightarrow$ lime
her $T^{\prime}=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right\} \subseteq \mathbb{R}^{2} . \quad$ lime $\subset \mathbb{R}^{2} \rightarrow$ lime
(2) her $T=\{f$ a poly $\ell \mid f(0)=0] \subseteq\{$ all polynomials $\}$;
$\operatorname{ker} T^{\prime}=\{f$ a poly \& $\mid f(1)=0\} \leq\{$ all polynomials $\}$.
There are all subspaces wive thought about before!. This is interning: What exactly is the relationship between $f^{M} T: V \rightarrow \omega$ and subspaces U? Caus we get all U? How many Ts give the same UC? What does W have t do with it? (Comicler $\omega=0$.)

These are all interesting quertian. For the moment, were going to produce a celatian between her T and in T :
Lam: $\operatorname{dim}(\operatorname{ker} T)+\operatorname{dim}(\operatorname{im} T)=\operatorname{dim} V, f_{a r}$ fid. V.
Pf'. Extend abatis of her T to are of V. The image of the extemian in in e Ti s a basis there. II
this is intoseting: the poof says that in V han the same dimmsian as a complement of her $T \rightarrow$ but $V \rightarrow$ in $T \hookrightarrow W$ is canonical, whereas a choice of complement (her $T)^{c} \leq V$ is not unique. We will think about the next time in the context of factorization.

Factorizations for Linear May:
Lat time we talked about sulspaces associated bo

To start, this picture ruggeits an interesting lemma:
Lem: A map $T: V \rightarrow W$ is injective if and only if $\mathrm{he} T=0$. Pf: If T is infective, then $\{v \in V \mid T(v)=0\}=0$. If T i) not injective them there are $v_{1} \neq v_{2}$ with $T\left(v_{1}\right)=T\left(v_{2}\right)$. But then $T\left(v_{1}-v_{2}\right)=T\left(v_{1}\right)-T\left(v_{2}\right)=0$ exhitit $v_{1}-v_{2} \in \operatorname{her} T . \square$

To complete the picture, were missing an analogue of Step (2): a way to build a swjectian with kernel the subspace her $T \leq V$. This actually looks a lot like what we did for sett:
Def: Given $u \leq V$, we define V / u by $V / u=\{v+u \mid v \in V\}$, a collection of subsets of v.
Lem: There is a map $f: V \longrightarrow V / U$ given by $f(v)=v+U$ which is smjective with kernel U.

This construction fills in the $2^{\text {ned }}$ step:

Let's think about che member of V / U some mare.
Rem: U itself is one member, since $O+U=U$.
Reni: The other member of v / u look lite tramelates of U off of the origin. We know there are not subspaces, but they are unful enough to earn a name: They are affine subspaces (ar trauclatee)

These know up when considering the sol ${ }^{n}$ ret to equestiane line $T(v)=a w$.
Lem: The sol ${ }^{\underline{u}} u$ et $\{v \in V \mid T(v)=\omega\}$ is empty or a tanilate of her T.
Pf'. If the wily int in empty, we are done. If it's nonempty, pick a $v \in V$ with $T(v)=\omega$. Then v the T exact the sol 1 net:
(1) For $h \in \operatorname{her} T, T(v+h)=T(v)+T(h)=\$ \omega+0=\omega$ gives another wal?
(2) For another wi ${ }^{\prime} v^{\prime}, T\left(v-v^{\prime}\right)=T(v)-T\left(v^{\prime}\right)=w-w=0$, so $v-v^{\prime}$ ether T; D

Ex: yawl
$\mathbb{R}^{2} \xrightarrow{f_{j} j_{x} \rightarrow} \mathbb{R}^{2}$
\downarrow
space f
vert. liner

Degeneracy: If her $T=0$, then $V \rightarrow V /$ her T is already bijective. If T is injecetiv, then in $T=\omega$. Now take $\operatorname{dim} V=\operatorname{dim} \omega<\infty$ T sim $\Rightarrow \operatorname{dim}$ her $T=0 \Rightarrow T$ in. T in $\Rightarrow{ }^{\text {a }}$ a bass of in T gives a li. set in ω of size $=\operatorname{dim} \omega$.

Baser ar presentation
A few timer in this class we've drawn some picture lite

$$
v \underset{\sim}{f} \omega
$$

j Liofoj \tilde{f}_{i} to communicate the
$v /$ he ff $\mid \xrightarrow{\tilde{f}} \inf$ identity $f=i \circ \tilde{f}_{0} j$.
There picture e are called diagrams, their nodes are labeled by vector spaces, their arrow by linear map, and they encode how different paths with the same start t end are the same.

A useful puzzle piece when drawing these pictures is the isomorphisms, which is a bijective for invertible linear map.
There look like V at-1of
Note that going $V \stackrel{f}{f} w \stackrel{f^{\prime \prime}}{V} V$ is the same as staying stecticueny at $V \longrightarrow$ i.e., the identity map $1: V \longrightarrow V$.
of louth
Lem: A bars S^{v} for a vector space V giver ane iss ${ }^{\underline{M}} K^{n} \xrightarrow{\varphi} V$, and conversely.
Pf: Given $\rho=\left(v_{1}, \ldots, v_{n}\right)$, we define $\varphi\left(k_{1}, \ldots, k_{n}\right)=k_{1} v_{1}+\cdots+k_{n} v_{n}$.
This is smjective beeares Spans, and it's ejective because S is linearly independent. If wive initial given φ, we set $v_{j}^{\prime}=\varphi(0, \ldots, 0,1,0, \ldots, 0)$ in the ${ }^{(0, t y}$ praitione. Again, surjectividy gives spanering+ingestivity gives linear independuce.

This means that $K "$ are the "ctonelard" vector spaces. - and because there are inc concrete paces, we can say a lot about them.

Lem: Linear map $K^{n} \xrightarrow{ } K^{m}$ are encoded by $m \times n$ matrices. $P f^{\prime}$ Any vector $v=\left(k, \ldots, k_{n}\right) \in K^{n}$ can be decomposed as $v=k_{1} e,+\cdots+k_{n e n}$ where e_{j} is ar before. So, we only need to evaluate $f\left(j^{j}\right)$, which it self hor a decomposition $f\left(e_{j}\right)=a_{1 j} \cdot f_{1}+a_{2 j} f_{2}+\cdots+a_{m j} f_{m}$, f_{j} the $i^{t h} s t^{2}$ bail vector in K^{m}. Arranging these umbibers into a grid $\left(a_{i j}\right)$, we uncover a matrix. Linear mop. of (ej) shows that a matrix specifier a function, which il checked to be linear. Linear indep. of $(f j)$ shows that no two matrices rep ${ }^{t}$ the same mop. I
Thu: Under a choice of bairn ane the domain and codomain, linear maps and matrices correspond.
Pf.

Lem: Matrix multiplication encorles function composition.
Pf: Represent f by $\left(a_{i j}\right)$ and g by $\left(b_{k l}\right)$. Then

$$
\begin{aligned}
f(g(e \ell))=f\left(\sum_{h=1}^{m} b_{k l} f_{k}\right) & =\sum_{k=1}^{m} b_{k l} f\left(f_{k}\right)=\sum_{k=1}^{m} b_{k l} \cdot\left(\sum_{i=1}^{m} a_{i k} \xi^{\prime} g_{i}\right) \\
& =\sum_{i=1}^{m} \underbrace{\left(\sum_{h=1}^{m} a_{i k} b_{k l}\right)} \cdot g_{i} .
\end{aligned}
$$

Duality (J.F)
One of the censesinences of last time is: "th equal "
Cor. $\operatorname{dim} \mathcal{L}(V, \omega)=\operatorname{dim} V \cdot \operatorname{dim} \omega$.
In particular, $\operatorname{dim} \mathcal{L}(V, K) \cong \operatorname{dim} V_{1}$ yet $V^{*}:=\mathcal{L}(V, K)$ 单 has interesting prapotiar not exactly like those of V. The mat basic such pongerty is chat it is backwards os contriavariaut.
Def: A map $f: V \rightarrow \omega$ molucer a map $f^{*}: \omega^{*} \longrightarrow V^{*}$ defined by $\left(f^{+\varphi}\right)(v)=\varphi(f(v))$. ar precomporitian).
Ex: There an iso $\mathcal{L}^{m}\left(K^{n}, k\right) \cong K^{n^{2}}$ by $\varphi \longrightarrow\left(\varphi\left(e_{j}\right)_{j}\right.$.
The induced matrix is $\left(a_{i i}\right)^{*}=\left(a_{i i}\right)$, called the trauppoie. You might enjoy cheating the identity $(A B)^{*}=B^{*} A^{*}$.

We have two take to take core of Joclay.
I. Parring: A map $V \times \omega \stackrel{H}{C} K$ is called a pairing, ane the pairing is moreover perfut if $\forall \omega \in \omega \exists v \in V$ with $\langle v, \omega\rangle \neq 0$.
Lem: A perfect pairing determiner an injection $\omega \stackrel{\approx}{\square} V^{*}$. Pf: This s jut "currijing: $\tau(\omega)(v)=\langle v, \omega\rangle$, and the perfection conditicue showichat $\tau(\omega) \neq 0$ so that τ is infective.

Reni. There is a "untiral" iso $V \cong V^{* *}$. There is an evaluation perfect pairing $V \times V^{*} \longrightarrow K$, ane flipping this around river au Mention $V \longleftrightarrow\left(V^{*}\right)^{*}$. Since there are equidimemianal, it's an isomophisiou. (In the o-dimensianal care, we af learnt get an infection.)
II. Sabriacer associated to clualmap1

Contain wing ow obserlian with subspace, it world be nice to undentand her $\left(f^{*}\right)$ and $\operatorname{im}\left(f^{*}\right)_{\text {in torn of } f \text {. }}^{\text {in }}$.

Teword this, we make the following interrelating def \because :
Def: Given $U \subseteq V$, we define the aunitilater $U^{\circ} \subseteq V^{*}$ in $\{\varphi \in V \mid U \leq h e r(\varphi)$, or $\varphi(u)=0\}$. This a subspace.
Levi: $\operatorname{dim} U+\operatorname{dim} U^{0}=\operatorname{dim} V$.
Pf: Comider $i: U \hookrightarrow V$ ane it dual $i^{*}: V^{*} \rightarrow 2 e^{*}$.
We have $\operatorname{dim} V^{*}=$ damper $\left(i^{*}\right)+\operatorname{dim} \operatorname{im}\left(i^{*}\right)$

$$
\begin{aligned}
& \operatorname{dm} V^{*}=\lim U^{0}+\operatorname{dim} U^{*} \\
& \operatorname{dim} V=\operatorname{dim} U^{0}+\operatorname{dim} U^{1}
\end{aligned}
$$

The annihilator also giver the derived relative between $f+f^{*}$:
Lem: her $\left(f^{*}\right)=(\lim f)^{\circ}$, and $\operatorname{im}\left(f^{*}\right)=(\text { her } f)^{\circ}$.
Pf : The first equality is a matter of de finitians. In the
second care, ont in $\left(f^{*}\right) \subseteq(h e c f f)^{\circ}$ is obvious from the
$\operatorname{def}{ }^{m}$. However, $\operatorname{dim} \operatorname{im} f^{*}=\operatorname{dim} \omega^{*}-\operatorname{dim} \operatorname{ker} f^{*}$

$$
=\operatorname{dim} \omega-\operatorname{dim}(\operatorname{im} f)^{0}=\operatorname{dim} \operatorname{ime} f_{3}
$$

$=\operatorname{dim} V-\operatorname{dim}$ her $f=\operatorname{dim}(\text { her } f)^{\circ}$. So, in $\left(f^{*}\right)$

1) a top -dim- suhpace of (her $f)^{\circ}$ and hence they're equal. D

Cor: $\operatorname{dim} \operatorname{im} f^{*}=\operatorname{dim} W^{*}-\operatorname{dim}$ her f^{*}

$$
\begin{aligned}
& \left.=\operatorname{dim} \omega^{-\operatorname{dim}(i m f}\right)^{0} \\
& =\operatorname{dimimf.}
\end{aligned}
$$

Polywuials over \mathbb{R} and $\&(C h .4)$
Soon, we will move on to the record major goal of this course'. understanding eq u of the forme $f(v)=k \cdot v$ for f a linear f n $f: v \xrightarrow{v}$ from a vector space to itself. We will fine out that analysis of this rituactide involves polynomials, which have particularly nice propestice $/ \mathbb{L}+/ \mathbb{R}$.
Lean. The only zerofuictian the zens poly nominal (over \mathbb{R} or (\mathbb{C}).
Pf: Suppare $f(x)$ s a nonzero polynomial $f(x)=a_{m} x^{m}+\cdots+a_{1} x+a_{0}$.
May ar well take $a_{m}=1$, and set $z=\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{m-1}\right|+1$. We must have $\{z\rangle 1$, so $z^{\langle m-1} \leq z^{m-1}$, w

$$
\begin{aligned}
\left|a_{0}+a_{1} z+\cdots+a_{m-1} z^{m-1}\right| & \leq\left|a_{0}\right|+\left|a_{1}\right| z+\cdots+\left|a_{m-1}\right| z^{m-1} \\
= & \left(\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{m-1}\right| z^{m-1}\right. \\
& <\left(\left|a_{0}\right|+\left|a_{1}\right|+\cdots+a_{m-1} \mid+1\right) z^{m-1}=z^{m}
\end{aligned}
$$

Hence, $\left(a_{0}+a_{1} z+\cdots+a_{m-1} z^{m-1}\right)+z^{m} \neq 0$
Levi. For $p, s \in p$ with $s \neq 0$ there are polynomials $P f: T(q, r): P_{n-m} \times P_{u-1} \longrightarrow P_{n}$

For dea $l(q, r) \longmapsto s q+r$ is a linear map.
For $\operatorname{deg} p \geq \operatorname{deg} s=m, T$ s infective, since otherwise $s q=-r$ for nonzero poly- of degree $\geq m$ aud $\leq u-1$. But $\operatorname{dim}\left(P_{n-m} \times P_{m-1}\right)=(n-m+1)+(m-1+1)=n+1=\operatorname{dim} P_{n}$, so it a also surjection. \square

A special care of this is when dey $s=1$.
Def $:$: A root of a polynomial p is a value \times with $p(x)=0$.
$C_{a r}$
α sa root of p iff $(z-\alpha)$ divides $p(z)$.
Pf: If $p(z)=(z-\alpha) g(z)$, then $p(a)=0$. Otherwise, $p(z)=(z-k) g(z) H_{r}$ for some r with $\operatorname{deg} r=0$, i.e., a constant. $b, p(\alpha)=r \neq 0$ aud α is not a root. 卫

Car. A porky nominal of leg a has at most u nooks.
Pf: In degree zero, $f(z)=a_{0} \neq 0$ hair no moth. In degree $1, f(z)=a_{0}$ ta, z has a unique rest $z=-a_{0} / a_{1}$. Otherwise, induct: in degree $n f(z)$ either hair no roost (\mathcal{J}) or at least ane root. Pick one a aud divide it out. $f(z)=q(z)(z-a)$. The zero-product property reduce to q, with $\operatorname{deg} q z=u-1$. I
Important fact: Every deg ≥ 1 poly- over \& has a root. "Fund. Th" of Algebra"
Car:- Every $f \in P(\$)$ ha a unicue (up to order factanizatian as

$$
f(z)=c \cdot\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{n}\right) .
$$

Pf: The existence of fut tue follows nome the Fact. If we had two such, we could pair one not he EPP. The two quotient agree except maybe at a-but thy mutt agree hereto by the previous Cor. Induct. I
Lem: Real polynomial e factor into $(z-\alpha)$ and $\left((z-4)^{2}+\beta^{2}\right), \beta>0$.
$P f$: Real root ocean in conviucate pain: $p(\bar{\alpha})=\overline{p(a)}=\overline{0}=0$. $F_{\text {ar }}$ a complex not, traulate it b the origin to get $(z-(h+i \beta))(z=(h-i p))$. D

Invariant Subspaces (5.A)
When we talked about matrices, we noticed that it war easier to understand $K_{S I I} \xrightarrow{f} K^{m}$, where $K_{j}=\left\langle v_{j}\right\rangle$ was $k_{1} \oplus \cdots \oplus k_{n} \overrightarrow{\left.f\right|_{k_{1}} \cdots} \oplus f / k_{n}$, the pave of v_{j} !

This idea holds in more generality: we can let the domain he V and tare any sum decomposition of V. The idea, ain, is that undentaucling $f l_{v}$ should be an eaier problem than undertanding f itself. Things are complicated by studying maps of the form $f: V \xrightarrow{ } V$ with the same domain + woman.

The linear map in this example dove not respect

 the subspace decomposition'. the second factor of the domain is blurred crow both in the ounce.
Def - A subspace $U \leq V$ is invariant if $f(U 1) \subseteq U$.

$$
\operatorname{imim}^{\prime \prime} f /{ }_{u}
$$

General problem. How can we find invariant subspaces? Hew finely can we find them (to avoid the trivial sol ${ }^{n} \ell(=v)$?

Weill start ar finely as porible:
Def: A vector $v \in V$ satisfying $f(v)=k \cdot v$ (i.e., $f(\langle v\rangle) \leq\langle v\rangle)$ is called an eigurutior of eigenvalue k.
Ex: In the example above, $\binom{1}{0}$ and $\binom{3}{1}$ are eigenvectors of eigenvalues 1 and 2 respectively. Moreover, $\mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ $\mathbb{R}^{2} \cong\binom{1}{0} \oplus\binom{3}{1}$, so this is as fine or poribble.

Ex: Recall che rotation operator $\mathbb{R}^{2} \xrightarrow{\left(\begin{array}{cc}00^{\circ} & -1 \\ 1 & 0\end{array}\right)} \mathbb{R}^{2}$. This ha wo eigenvector over \mathbb{R}.
Over 4 , it does: $\binom{y}{-x}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\binom{x}{y}=\lambda\binom{x}{y}=\binom{\lambda x}{\lambda y}$ han nonzen solution e by setting $y=\lambda x$ and $-x=\lambda y=\lambda\left(\lambda_{x}\right)$, or $\lambda^{2}+\lambda=0$, or $\lambda= \pm i$. Some corvepouding eigenvector are $(x,-i x)$ for i and $(x, i x)$ for $-i$.

Lem: If v_{1}, \ldots, v_{m} are eigenvector for distinct eigenumanes then they are $1 . i$.
Pf: Let $a_{1} v_{1}+\cdots+a_{k} v_{k}=0$ be the earlier t dependence. Then $\stackrel{f}{\sim} a_{1} \lambda_{1} v_{1}+\cdots+a_{k} \lambda_{2} v_{k}=0$, and
$i^{\lambda_{k}} a_{1} \lambda_{k} v_{1}+\cdots+a_{k} \lambda_{k} v_{k}=0$, whore difference is ancearlier
$a_{1}\left(\lambda_{1}-\lambda_{k}\right) v_{1}+\cdots+\left\{_{k-1}\left(\lambda_{k-1}-\lambda_{k}\right) v_{k-1}=0\right.$. Thisis dependence. \square
Cor: $f: V \rightarrow V$ ha at most $\operatorname{dim} V$ district eigenvalues. D
Def": If $U \leq V$ invariant for f_{1} thee we eau build two geneton:

Warning: Ignoring U can get you int trouble, it there's no invariant complement to Ue

$$
\left(\begin{array}{l}\left.01_{y}^{4}\right)^{4}(x y i c a l \\ 1\end{array} \mathbb{R}^{2} \xrightarrow{\text { Ty }} \xrightarrow{\longrightarrow} \text { example: }\right.
$$

$$
\begin{aligned}
& \binom{0}{1} \longrightarrow \mathbb{R}^{2} \longrightarrow \mathbb{R} \quad \text { ut } f \text { is nonzero. }
\end{aligned}
$$

Eigenvectors +U-T matrices (S.B)
Q: How are we inppored to find eigenvector? How do we even know that they exist?
 Pf: Pick $v \neq 0$ and consider $\left\{v, f v, f f v, \ldots, f^{n} v\right\}$. This must have a dependence: $a_{0} v+a_{1} f v+\cdots+a_{n} f^{u} v=0$. for a nomen coif ${ }^{\prime} a_{a}$. The polynomial $p(f)=a_{0}+a_{1} \cdot f+\cdots+a_{n} f^{n}$ factor ar $p(f)=c\left(f-\lambda_{1}\right) \cdots\left(f-\lambda_{n}\right)_{\text {, }}$ and we substitute tho in: $c\left(f-\lambda_{i}\right) \cdots\left(f-\lambda_{n}\right) v=0$. One of there maps $f-\lambda_{j}$ must fail to be infective, i.e., \exists w with $f_{\omega}=\lambda_{j} \omega$. I
Some days ago, we worked through the example $\left(\begin{array}{ll}1 & 3 \\ 0 & 2\end{array}\right)$, which had eigenvalues 1 and 2. This behavior is actually generic." the ciqusaluer of an upper-triangular matrix lie an it diagonal. Additionally, every matrix admits (/C) an upper triangular presentation.

Rem: In terms of invariant sulipaces, the matrix of f re a bars $\left(v_{1}, \ldots, v_{n}\right)$ is upper triangular when span $\left(v_{1}, \ldots, v_{j}\right)$ is invariant forcach j.
Cor: Over \&, every operator f admits an upper-triangular presentation. Pf: We will induct an u, as the result is trivially true at $u=1$. By the Theorem, let λ be an eigquvalue for f, and set $U=\operatorname{im}(f-\lambda)$. This is a proper cubppace which ss invariant nuder: for $u \in U$, $f(u)=(f-\lambda) u+\lambda u$ decomposer as two Hing in u. Hence, we cave find ave upper-triangular boris for $f \mid u,\left(u_{1}, \ldots, u_{u}\right)$, which we extend bo a basis $\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}\right)$ of V. By hypotheri, $u_{j} \in \operatorname{spau}\left(u_{1} \ldots, u_{j}\right)$. For $v_{j}, f\left(v_{j}\right)=(f-\lambda)\left(v_{j}\right)+\lambda v_{j} \in \mathcal{U}_{\text {pau }}\left(u_{1}, \operatorname{spau}\left(v_{j}\right)\right.$ $\subseteq_{\text {spar }}\left(u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{j}\right) . \square$

Car: An upper-triangular matrix invertible iff is diagonal entries are nonzero. Pf: If λj are all wouzero, we can back-substitute to get $v j \in i m f$ for all v_{j} in the bass. But then $\operatorname{dim} \operatorname{im} f=\operatorname{dim} V$. Conversely, if $\lambda_{j}=0$ for one $\dot{\eta}$, then ire $\left.f\right|_{v_{1}, \ldots, j} \subseteq$ pan $\left(v_{1}, \ldots, v_{j-1}\right)$. This forcer f not to be injection.
Cor: The eigenvalues of an upper triangular matrix appear in it diagonal. P: $\left(\begin{array}{ccc}\lambda_{1}-\lambda & * & \cdots \\ 0 & \vdots \\ \vdots & \ddots & \\ 0 & \cdots & \lambda_{n}-\lambda\end{array}\right)=M-\lambda j$ is mon -in
Ex: $M=\left(\begin{array}{ll}-2 & 3 \\ -4 & 5\end{array}\right) . v=\binom{1}{0}, M v=\binom{-2}{-4}, M_{v}^{2}=\binom{-8}{-12}=3 M_{v}-2 v . \begin{aligned} & M^{2}-3 M+2=0 \\ & (M-1)(M-2)=0 .\end{aligned}$
$\lambda=1$, al a guess. Hor $v_{1}=\left|\begin{array}{l}1 \\ 1\end{array}\right|$ ar a withers, 10 it's an eigenvalue.
Them $M-\frac{1}{2} \lambda=\left(\begin{array}{ll}-3 & 3 \\ -4 & 4\end{array}\right)$ hat image $U=\operatorname{spara}\left\{\binom{1}{1}=u_{1}\right\}$.
Extend this b a hail $\left\{\binom{1}{1}=u_{1},\binom{0}{1}=v 1\right\}$. Then

$$
\begin{aligned}
& \mathbb{R}^{2} \xrightarrow{\left(\begin{array}{ll}
-2 & 3 \\
-4 & 5
\end{array}\right)} \mathbb{R}^{2} \quad\left(\begin{array}{ll}
-2 & 3 \\
-4 & 5
\end{array}\right)\binom{1}{1}=\binom{1}{1} \cdot(1)+\binom{0}{1} \cdot 0 \\
& 4\binom{4}{4}\left(\begin{array}{l}
-2
\end{array}\right)\binom{0}{-4}=\binom{3}{5}=\binom{1}{1} \cdot(3)+\binom{0}{1}(2) \\
& \mathbb{R}^{2} \xrightarrow[\left(\begin{array}{ll}
1 & 3 \\
0 & 2
\end{array}\right)]{ } \mathbb{R}^{2}
\end{aligned}
$$

Diagoualizability: a sperial case (5.C)
Previansly wive discussed eigenvaluer and cigenvectors.
Dem:. If v_{1} and v_{2} are eigenvector for the canne eigeninalue λ_{1}, then so is any linear combination $k_{1} v_{1}+h_{2} v_{2}$.
Def: The eigenspace asrociated to an eigenvalue λ is $E(\lambda, f)=\operatorname{her}(f-\lambda)$.

Leu: For $\lambda \neq \lambda^{\prime}, E(\lambda) \cap E\left(\lambda^{\prime}\right)=0$.
Cor: For $\left\{\lambda_{j}\right\}$, the smm $E\left(\lambda_{1}\right)+\cdots+E\left(\lambda_{n}\right)$ is direet, and $\operatorname{dim}\left(E(\lambda)+,\cdots E\left(\lambda_{u}\right)\right)=\operatorname{Iij}_{j} \operatorname{dim} E\left(\lambda_{j}\right) . \quad \square$
Rem: If If is diagenalizable, theu its eigenvaluer are the diaganal eutrier, and $V=\oplus{ }_{\mp} E\left(\lambda_{j}\right)$.
Lem: Take V f.d., $f: V \rightarrow V$ lineor with eigenvaluer $\lambda_{1}, \ldots, \lambda_{m}$. TFAE:
a) If diagenalizable. b) V has a bessis of eigenvectors.
c) There exat 1 -dimil invariment sulpaccer $U_{i} \leq V$ with $V=\theta_{0} U_{j}$.
d) $V=E\left(\lambda_{1}\right) \oplus \cdots \oplus E\left(\lambda_{m}\right)$. e) $\operatorname{dim} V=\operatorname{dim} E\left(\lambda_{1}\right)+\cdots+\operatorname{dm} E\left(\lambda_{m}\right)$.

Pf: $a \Leftrightarrow b \Rightarrow c \Rightarrow b$ are all eary. $b \Rightarrow d$ by colleting invariant subipacas of like eigeuvalue. d $\geqslant e$ by directuer. To set $e \Rightarrow h$, uniau baves for che indivislual subpeacee together.

Car: If f har $n=\operatorname{dim} V$ distinct eigennaber, then f is diagenalizalle.

Ex: $\left(\begin{array}{ccc}1 & 1 & -1 \\ -6 & 8 & -3 \\ -4 & 4 & 1\end{array}\right)$ har aigenvaluer 3,2 , and 5 .
Ex: $\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ har eigenvalues 0 alone.
Ex: $\left(\begin{array}{ccc}-5 & -6 & 3 \\ 3 & 4 & -3 \\ 0 & 0 & -2\end{array}\right)$ har eigenvaluer 1 and -2 eigenvectors $\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$.

Ex: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \quad$ har eigenvalues 1 aldue.
Lingering quertioni. How can we effertively compute eígenvalues and eigenvectous?

- How can we recoguize (quecial claree ofl dia genal matrice??
- How con we compute (bawids on) dim $E(\lambda)$?

Orthogonality: $(6 . A-B)$
\int Def: An inner product an V is a bilinear $f^{n}\langle(-,-\rangle: V \times V \rightarrow \mathbb{R}$ or \notin such that:" $(i)\langle v, v\rangle \geq 0$ for all $v \in V$ (require " $\geq " \operatorname{su}(v, v) \ldots$),
(ii) $\langle v, v\rangle=0$ if $v=0$, (iii) $\langle u t v, w\rangle=\langle u, \omega\rangle+\langle v, \omega\rangle$,
$($ cot $\langle c u, v\rangle=c\langle u, v\rangle$, and $(v)\langle u, v\rangle=\overline{\langle v, u\rangle}$.
Exiot he dot product on \mathbb{R}^{u} and k^{u}.
For numbed $c^{\prime} \geq 0$, the modified dot product

$$
u_{i} \omega=c_{1} u_{1} \bar{w}_{1}+\cdots+c_{n} u_{n} \bar{w}_{n} .
$$

(3) $\langle f, g\rangle=\int_{-1}^{1} f(x) \cdot g(x) d x$ on $V=\left\{\right.$ integrable $\left.f^{\text {ms }}[-1,1] \rightarrow \mathbb{R}\right\}$.
length $\left\{\begin{array}{c}\text { Def: The norms } i \text { defined by }\|v\|=\sqrt{\langle v, v\rangle} \text {. It satisfies }\|v\|=0 \\ \text { iff } v=0\end{array}\right.$ inf $v=0$ and $\|\lambda v\|=|\lambda|$. $\|v\|$.

Def'. u and v are arthognal when $\langle u, v\rangle=0$.
Cor: If u and v are orthogonal, then Hutvill ${ }^{2}=\left\|u l^{2}+\right\| v \|^{2}$.

$$
\left.\overline{P f}:\langle u+v, u+v\rangle=\langle u, u\rangle+S_{u, v}\right\rangle^{\prime}+\left\langle v, u S^{\circ}+\langle v, v\rangle . \quad \square\right.
$$

Thun (Canchy-Schwarz): $|\langle u, v\rangle| \leq N u l l \cdot\|v\| l$, maximized only when $u=k \cdot v$ for a scalar.
$P f:$ Write $u=\frac{\langle u, v\rangle}{\left\|u_{v}\right\|^{2}} \cdot v+\left(u-\frac{\langle u, v\rangle}{\|v v\|^{2}} \cdot v\right)$.
collier with v orthogonal to $v=i \omega$.
Pr thar: $\|u\|^{2}=\frac{\mid\left\langle\left. u_{v} v\right|^{2}\right.}{\left\|_{v}\right\|^{4}} \cdot\|v\|^{2}+\|w\|^{2} \geq \frac{\left|\left\langle u_{v} v\right\rangle\right|^{2}}{\|v\|^{2}} \cdot D$
Cart Triangle Ines): $\|u+v\| \leq\|u\|+\|v\|$ for all u, v.

$$
\begin{aligned}
P f:\langle u v v, u+v\rangle & =\langle u, u\rangle+\langle v, v\rangle+\langle u, v\rangle+\langle u, v\rangle \\
& \left.=\frac{\| /-}{\| \operatorname{Re}\langle u, v\rangle \leq 2} \leq 2\langle u, v\rangle \right\rvert\, \leq 2\|u\|\|\cdot\| v \| \\
& =\left(\left\|_{a l}+\right\| v u\right)^{2} .
\end{aligned}
$$

Def: An arthonormal basis is a basis $\left(v_{1}, \ldots, v_{n}\right)$ with $\left\|v_{y}\right\|=1$ and $\left.\left\langle v_{i}, v_{j}\right\rangle\right\rangle=0$.
Lem.' In an orthonormal bars, $v=\left\langle v_{1} v_{1}\right\rangle_{v}+\cdots+\left\langle v_{1}, v_{n}\right\rangle_{v_{n}}$.
Pf'. Certainly $v=k_{1}, v_{1}+\cdots$ thnvu, We can calculate by by applying $\left.(-, v\rangle\right\rangle$, I
Thun' Gram-Sehmidt): Every hair can be made orthonormal.
Pf:' We induct. Make vj orthogonal to the ones before it by replacing it
by $v_{i}-\left\langle v_{j}, v_{1}\right\rangle v_{1}-\cdots-\left\langle v_{j}, v_{j-1}^{\prime}\right\rangle v_{j-1}^{\prime}$ and normalize that by replacing if with $v^{\prime} / \| v i l l$. The pau is preserved.

Rum: This procedure preserver upper-triangularity.

Recall that we have a diagram
Thu (Rierz): For V finite dime and
$\varphi \in V^{*}$, there is a unique $\omega \in V \quad(u,\langle-, v\rangle)$
sech that $\varphi=\tau(\omega)$. (That $s,\langle-,-\rangle$ induce an iso $\stackrel{\mu}{ } V \xrightarrow{\tau} V^{*}$.)
Pf:

$$
\begin{aligned}
\varphi(v) & \left.=\varphi\left(\psi v_{,} v_{1}\right\rangle v_{1}+\cdots+\left\langle v_{1}, v_{n}\right\rangle v_{n}\right) \\
& =\left\langle v, v_{1}\right\rangle \varphi\left(v_{1}\right)+\cdots+\left\langle v_{1} v_{n}\right\rangle \varphi\left(v_{n}\right) \\
& =\langle v_{1}, \underbrace{\left.\varphi\left(v_{1}\right) v_{1}+\cdots+\overline{\varphi\left(v_{n}\right)} v_{n}\right\rangle}_{w} .
\end{aligned}
$$

If ω_{1} and ω_{2} both do the $\left.j_{0}\right\}$, then $\left\langle v, \omega_{1}\right\rangle-\left\langle v_{1}, \omega_{2}\right\rangle=\varphi(v)-\varphi(v)=0$ $\left\langle v, w_{1}-\omega_{2}\right\rangle$.
SD, pick $v=\omega_{1}-\omega_{2}$ and use nondejeueracy. I
(Raul: We already knew $\%$ war infective by a part Lemma.)

Minimization: (6.C)
Def: For an inner - prochutspace, the ainu lilater giver rive to the orthogeral subspace: $U^{\perp}=\{v \in V \mid\langle v, u\rangle=0$ for all $u \in\}$
Lem: This has a number of properties, some innecliote from the connection to the annihilator:
(a) $V=U \oplus U^{\perp}$ for fid. U.
(b) $\operatorname{dim} u^{\perp}=\operatorname{dim} V-\operatorname{dim} U_{n}$ for f.d.V.
(c) $\left(U^{\perp}\right)^{\perp}=U$ for fid. U.

Def: Part (al giver rise to the projection operation: $P_{u}(v)=P_{6}\left(u+u^{\perp}\right)=u$, which diseand the u^{\perp} coruponent of x. Fur au arthowonnal bass er,..., eu of U, we have $P_{u}(v)=\left\langle e_{j}, v\right\rangle \cdot e_{j}$.
Lew: (a) her $P_{U}=U^{+}$.
(b) ii $P_{u}=U$, and $P_{u} \mid u=i d$.
(c) $P_{u}^{2}=P_{u}$.
(d) $\left\|P_{u}(v)\right\| \leq\|r\|$.

All of there are easy to verily. The real utility of P_{u} is the following'.

Thun'. Take $v \in V, U \leq V f . d$, ane $u \in U$. Then $\left\|v-P_{u} v\right\| \leq\|v-u\|$ (with equality only at $u=P_{u}(v)$).

Pf:

$$
\begin{aligned}
\left\|v-P_{u}(v)\right\|^{2} & \leq\left\|_{v}-P_{u}(v)\right\|^{2}+\left\|P_{u}(v)-u\right\|^{2} \\
& =\left\|v-P_{u}(v)+P_{u}(v)-u\right\|^{2} \quad\left(P_{y}+t_{\text {ag. }}\right) \\
& =\|v-u\|^{2},
\end{aligned}
$$

Equality happen iff $\left\|P_{u}(v)-u\right\|^{2}=0$, or $P_{u}(v)=u$. II "Prev is the cloreef point to y in $\mathbb{U} . "$

Ex: As an example, we can use the bo build approximations inside of function spaces.
Set $V=C[-\pi, \pi]$

$$
\begin{aligned}
& U=\operatorname{pan}\left\{1, x, x^{2}, x^{3}, x^{4}, x^{5}\right\}, \\
& f=\sin (x) \in X .
\end{aligned}
$$

Step (1): Do Gram-Schurilt to the basis of U.
Step (2): Do arthoginal projection of f to U using this orthonormal bars.
(Tinkereel with Mathematica examples.)

Self-acjoint + normal aperatom (7.A)

So: f^{*} can also be considered an a map $f^{*}: \omega \rightarrow V$ in the presence of inner-product. This map is called the adjoint of f, accel it satisfies $\langle f(v), \omega\rangle_{\omega}=\left\langle v, f^{*}(\omega)\right\rangle_{v}$.
Levi. Again, we au mix annihilators t ianer-proeluch to produce:
(a) kerf $f^{*}=(\lim f)^{+}$,
(b) in e $f^{*}=(\text { her })^{\perp}$
(c) her $f=(\operatorname{im} f)^{L^{\prime}}$,
(d) in $f=(\text { kerf })^{\perp}$, for $f: V \rightarrow \omega$. I

Lem.' Far $\left(l_{1}, \ldots, e^{n}\right)$ and $\left(f_{1}, \ldots, f_{m}\right)$ orthonormal barer of V and ω, the matrix M^{*} reporecertivig $f^{*}: \omega \rightarrow V$ is the conjugate tramper of M roping $f: V \longrightarrow \omega$. I
Def: $f: V \rightarrow V$ is self-adjout when $f=f^{*}$.
(Cor: In au e orthonormal bars, f is conjugete-symmetor.)
These operators have particularly nice properties. Here are some:
Lem: Every eigenvalue of a velf-adjont operation is real.

$$
P f:\left\langle T_{v, v}\right\rangle=\left\langle v, T_{v}\right\rangle=\langle v, \lambda v\rangle=\bar{\lambda}\|v\|^{2}
$$

$$
\langle\lambda v, v\rangle=\lambda\|v\|^{2} .
$$

Levi: Suppose V_{1} complex and $f: V \rightarrow V$ is linear f. f is self-acjoint if + only if $\langle T v, v\rangle \in \mathbb{R}$ for each $v \in V$. B

Def.' A slightly weaker property is for f bo be normal: f ** $f=f \circ f^{*}$.
Ex: $\left(\begin{array}{cc}2 & -3 \\ 3 & 2\end{array}\right)$ is normal but not relf-adjout (i.e., not ymmetriel.

Lem: T is normal inf $\left\|T_{v}\right\|=\left\|T^{*}\right\|$ for all v.
Pf: Canciler $\left\langle\left(T T^{*}-T^{*} T\right) v, v\right\rangle=0$. \quad 口
Coos: T and T^{*} have the same eiganventan $w /$ conjugate eigenvelwee.

$$
\overline{P f}: 0=\|(T-\lambda) v\|=\left\|(T-\lambda)^{*} v\right\|=\left\|\left(T^{*}-\bar{\lambda}\right) v\right\| .
$$

Lem. If f is normal, then $v \in E\left(\lambda_{1}\right)$ and $w \in E\left(\lambda_{2}\right)$ are arthoganal.

$$
\bar{P} f \text { : } O=\langle T u, v\rangle-\left\langle u, T_{v}\right\rangle=\langle\alpha u, v-\langle u, \bar{\beta} v\rangle
$$

$=(\alpha-\beta)\langle u, v\rangle$. Since $x-\beta \neq 0$,
we mut have $\langle u, v\rangle=0$.
We are going t prove the following theoremei:
Thun: Let $f: V \rightarrow v$ be a linear f^{n}.
(a) If V is complex, then f is normal inf $f i r$ diaguralizable
(b) If $V_{\text {is }}$ real, then $f 11$ relf-acjoint of f is diaganalizable.
... in an orthonormal bars.

The Spectral Theorem (7.B)
Lat tine, we announced two diacoralizatian theorems. Today, we prove theme.

Thus: V a fid. \subset-vector space, $f: V \rightarrow V$ linear. f is normal iff f admits an orthonormal diagonalization. Pf: $\left(\Rightarrow\right.$ If f ad mit an orth normal diaganatizachion there f^{*} \rightarrow diagonal for the save basis. Diagorial matrices commute. $(\Rightarrow$ Start by finding an orthonormal bass in which is upper-triangular, ming Shari theorem. We want to conclude that normality $+U . T . \Rightarrow$ diaganal.

Write

$$
M=\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \\
a_{1 n} \\
a_{22} & \cdots & a_{2 n} \\
0 & \vdots & \vdots \\
a_{n 1}
\end{array}\right) \text {, so that } M^{*}=\left(\begin{array}{cccc}
\overline{a_{11}} & & & 0 \\
\vdots & \vdots & \ddots & \\
\frac{a_{2 n}}{a_{i n}} & \overline{a_{21}} & \cdots & \overline{a_{k n}}
\end{array}\right)
$$

We proved la rt time chat $\left\|T_{v}\right\|=\left\|T^{*} v\right\|$ for normal aperatore T, so we learn $\left\|a_{11}\right\|^{2}=\left\|T_{e_{1}}\right\|^{2}=\left\|T^{*}{ }_{\text {el }}\right\|^{2}=\left\|a_{u}\right\|^{2}+\left\|a_{12}\right\|^{2}+\cdots+\left\|_{a_{1 n}}\right\|^{2}$.
This forces $a_{12}=\cdots=a_{11}=0$. We cav repent thess are e_{2}, \ldots, e_{n}. II
In che real cave, we are mule worse off: we don't Even how that real operators admit UT. presentation Cor eigunvectarsl.
Levi. Self-adjoint real operator have eigenvectors.
Pf: Begin the ave al before'. starting with $v \neq 0$, fined a linear dependence in $\left(v, f_{v}, f^{2} v, \ldots, f^{u} v\right)$, quarancteed my $\operatorname{dim} V=u$. Froe the depenclence $a_{n} f^{\prime} v f^{\prime} \cdots+a_{1} f_{v} t_{a_{0}} v=0$, extract a polynomial $p(x)=a_{n} x^{4}+\cdots+a_{1} x+a_{0}$, ave factor it ar $p(x)=c^{(}\left(\left(x-h_{1}\right)^{2}+h_{1}^{2}\right) \cdots\left(\left(x-h_{m}\right)^{2}+k_{m}^{2}\right)\left(x-r_{1}\right) \cdots\left(x-r_{l}\right)$. We want to show that $\left(\left(f-h_{i}\right)^{2}+k_{j}^{2}\right)$ is invertible, $k_{j}>0$.

$$
\underbrace{f^{2}-2 h f+h^{2}+h^{2} \quad \int_{\text {ulf-all. }}^{\text {Cauchy- }} \begin{array}{l}
\text { Chwarz }
\end{array}}
$$

We jut do it: $\left.\quad\left((f f-h)^{2}+h^{2}\right) v, v\right\rangle=\left\langle f^{2} v, v\right)-2 h(f v, v)+\left(h^{2}+h^{2}\right)\langle v, v\rangle$

$$
\begin{aligned}
& \geq\left\|f_{v}\right\|^{2}+\mid 2 h\| \| f_{v}\| \|_{v}\left\|+\left(h^{2}+h^{2}\right)\right\|_{v} \|^{2} \\
& =\left(\left\|f_{v}\right\|+h\|v\|\right)^{2}+\left(k\left\|_{v}\right\|\right)^{2}>0 \text { for }\|v\|>0 .
\end{aligned}
$$

With then factors eliminated, we proceed ar in the \& case. I
Thun: V a f.d. \mathbb{R}-vector space with inner product, $f: V \rightarrow V$ liner. f is relf-adjoint iff f admin an orthonormal diaganalizatiau.
Pf: We induct are the dimension of V, since it is trivial for dime $V=1$.
B, the Lemma, f admit an eigenvector v, spanning au invariant 1- dime subspace U. Fins, note chat U^{\perp} is a (wo invariant nuder f : for any $u \in U$ and $v \in U^{\perp}$, we have $\langle u, f v\rangle=\langle f u, v\rangle=0, s o f_{v} \in U^{\perp}$. Addifitianally, $f(u \perp$ is still seff-adjoint: $\langle f(u \perp v, w\rangle=\langle f v, w\rangle=\langle f, w)=\langle v, f \mid u+w\rangle$. Hence, we can induct on $f\left(u^{+}: U^{\perp} \rightarrow U^{+}\right.$to complete the proof. I

That's enough for ave day. To summarize'

- \& and normal 三 clíagonalizable arthonermally,
- \& and self-acforint $\equiv \xrightarrow{\text { real eigenvalues. }}$
- \mathbb{R} ave self-adjoint = diagaualizable erthononually.
- \mathbb{R} and normal au $\S 9 . B$.

Square rest aud gconctor (7.C)
because
One consequence of the spectral theorem is that, diageivelized operators have very easy arittimetic, so do self-abpoint operation. Consider the following:
Def'. An procter $f: V \rightarrow V$ s positive when it is elf-acfoint and when $\langle f v, v\rangle \pm 0$ for all v. (If V is complex, we jut ark for the inequality + crap the adjointuea.)
Lem For $f: V \rightarrow V$, TFAE:
(a) f is positive. (b) $f a$ relf-ag pint + all the e.value are ≥ 0.
(c) f haw a positive square cost. (d) f has a self-acioint square root.
(e) There in a recount aperater $g i v \rightarrow V$ with $f=g^{*} \circ g$.

Pf: $a \Rightarrow b$ In paitivity on the e.vectovn. $b \Rightarrow c, \ln$ taking an admwire spare root f the diagonal $c \Rightarrow d$ trivially, or doer $d \Rightarrow e$. To get $e \Rightarrow a_{1} T^{*}=\left(R^{*} R\right)^{*}=R^{*} R^{* *}=R^{*} R=T$.

In fact, if we fully retried attuction do positive operation,
Leas:... the positive square not of a positive operation ss unigree. Pf: For g a root of f and $f_{v}=\lambda_{v}$ an eigenvector of f, we want to show $g v=\sqrt{\lambda} \cdot v a$ for g any prititix squire coot. We know g action a diagomalizatione and that its square has eigenvalues the squares of those of g. The l : lemma for eigenvector forcer $g v=\sqrt{\lambda} v$.
Lingering_quertiau. How many other square root are there?
 for all vel. These are the "gaometiny-preserving fie".

Lem: For $f: V \rightarrow V$, TFAE:
(a) Sf is an isometry. (b) $\langle f u, f v\rangle=\langle u, v\rangle$ for all u, v.
(e) $f_{e_{1}}, \ldots, f_{e_{n}}$ is orthonormal for each orthonormal list e_{1}, \ldots, e_{u}.
(d) there exist any orthonormal list $e_{1}, \ldots, e n$ st. $f e_{1}, \ldots$, fen is too.
(e) $f^{*} \circ f=i d . \quad(f) f \circ f^{*}=r d . \quad(g) f^{*}$ is an isonutim.
(h) $f \propto$ invertible and $f^{-1}=f^{*}$.

Pf: $(a=b \mid$ This war honneww: inner products cave be counted from norms. $(b \Rightarrow c l$ Being wothowormal 1$)$ au inner product conditiaue.
$(c=d)$ Trivial: pick any orthonormal basis.
$(d \Rightarrow e) W_{e}$ have $\left\langle e_{i}, e_{j}\right\rangle=\left\langle f_{e_{i},} f_{j}\right\rangle=\left\langle f^{*} f_{e_{i}}, e_{j}\right\rangle$. Since $\left(e_{j}\right)$
former a bairn; thin giver $\left\langle f^{*} f u, v\right\rangle$ for all $u, v \in X$.
This forcer $f^{*} f=$ id.
$(e \Rightarrow f)$ Since V is finite dinemianal, $\& f^{*} f=$ id forcer $f f^{*}=i d$.

$$
\begin{aligned}
& (f \Rightarrow g)\left\|f^{*} v\right\|^{2}=\left\langle f^{*} v, f^{*} v\right\rangle=\left\langle f f^{*} v, v\right\rangle=\langle v, v\rangle=\|v\|^{2} . \\
& (g \Rightarrow h) A_{p p} l y a \Rightarrow \text { a } \\
& \left(h \Rightarrow a l\left\|f_{v}\right\|^{2}=\left\langle f_{v}, f v\right\rangle=\left\langle f^{*} . f v, v\right)=\langle v, v\rangle=\|v\|^{2} .\right.
\end{aligned}
$$

Run: (e) is supposed to mean that there are los of square roots of the identity, connected to the variauer isometries

Polar de compristiant SVD (7.D)
Today we use ow study of square roots to tackle presentactiane of arbitrary opocotion.
"polar Thus: For $f: V \longrightarrow v$, there 11 au isometry with $f=g \cdot \sqrt{f^{*} \circ f}$. Pf: Start by noting $\|F\|^{2}=\left\langle f^{*} F v, v\right\rangle=\left\langle\sqrt{f^{*} f} v, \sqrt{f^{*} P v}\right\rangle \|$ positive. $=\left\|\sqrt{f^{*} f} v\right\|^{2}$. We "define" a function $\delta: i m \sqrt{f^{*} f} \longrightarrow$ inef LI $g\left(\sqrt{f^{*} f}(v)\right)=f(v)$ now we need to cheek (1) that thu def" is somel, that itextench to V, aud t that me get an isometry in the encl.
(1): $\left\|f v_{1}-f_{v 2}\right\|_{=}=\left\|f\left(v_{1}-v_{2}\right)\right\|=\| \sqrt{f^{*} f\left(v_{1}-v_{2}\right) \|=0 \text {, so that }}$ her $\sqrt{f^{*} f} \overline{\mathbf{c}^{2}} k e r f$.
(2): We also lean that $\operatorname{dim} \operatorname{im} f=\operatorname{dim} \operatorname{inn} \sqrt{f^{*} f}$ ave that $\operatorname{dim}\left(\operatorname{im} f^{\prime}\right)^{\perp}=\operatorname{dim}\left(i m m f^{f^{\prime f}}\right)^{\perp}$. We un thu to extenelf: g acts al above on one $\sqrt{f^{+} f}$ and by any isometry carrying an orthonormal basic of $\left(i m \sqrt{f^{*} f}\right)^{\perp} b_{5}(i m f)^{\perp}$ one of.
(3) So exteneled, gi au isometry: g's two diefinitioner are individually isometric, and the Pythagorean Theoveae extecule thin over the orthogonal sum.

Rem.' Even though g and $\sqrt{f^{*} f}$ are diagonalizable, this may require different wothonomal bases for each.
In fact, this int sued a protilem, because isometries are nice enough in any basis. Favoring the orthonormal basis diagonalizing $\sqrt{f^{*} f}$ lead to the Singular Value Deconeporition.

Def:' The singular values of f are the eigenvalues of $\sqrt{f^{*} f}$, with each ei cenvalue x repeated $\operatorname{dim} E\left(\lambda, \sqrt{f^{*} f}\right)$ timer. (These are the diagonal entries of an orthonormal diagonal presentation of $\sqrt{f^{k} f}$.)
Thu (SUD): There exist orthonormal bases $\left(e_{j}\right)$ and ($\left(d_{j} j_{j}\right)$ of Y scull that $f(v)=s_{1}\left\langle v, e_{1}\right\rangle d_{1}+\cdots+s_{n}\left\langle v, e_{i}\right\rangle d_{n}$, for $\left(s_{1}, \ldots, s_{n}\right)$ the singular valuer of f.
Pf:' Let $\left(e_{1}, \ldots, e u\right)$ parent au orthonormal diagonalization of $\sqrt{f^{*} f}$, so that $\left(\sqrt{f^{*} f}\right)(y)=s_{1}\left\langle v_{1} e_{\gamma}\right\rangle e_{1}+\cdots+s_{n}\left\langle v, e_{u}\right\rangle$ eu. Then the columsss of the isometry g appearing in the polar de composition of f give an orthonormal ot $\left(d j=g\left(e_{j}\right)\right.$), aud $f(v)=g\left(s_{1}\left\langle v_{1} e_{1}\right\rangle e_{1}+\cdots+s_{n}\left\langle v_{1} e_{u}\right\rangle e_{u}\right)$

$$
=s_{1}\left\langle v, e_{1}\right\rangle d_{1}+\cdots+s_{n}\left\langle v, e_{u}\right\rangle d u
$$

Reni. This is a slick, useful upgrade from Gaussian elianination, which also cleverly piched base that diagonalized a matrix.
Devi. The evaluer of $\sqrt{f^{\prime} f}$ are the nonnegative nook of the eivalual of $f^{k} f$.
Ex: $f\left(x_{1}, x_{2}, x_{2}, x_{4}\right)=\left(0,3 x_{1}, 2 x_{2},-3 x_{4}\right)$ has $f^{*} f\left(x_{1}, x_{2}, x_{2}, x_{4}\right)=\left(9 x_{1}, 4 x_{2}, 0,9 x_{4}\right)$, to the sivaluer off are $(3,3,2,01$, whereas the e valuer of f are merely $-3+0$, which is not enough to recover f (sine f is not normal, hence not diaganalizable).

Gencicalized Eiguncetom (8:A)
In thi chapter ine ore aiming to corceet a defricency in our discursian of eigenspacet auct diaganalizatian : the anly ogerationsfialinitting diageitial presentations are thove wisth $V=\Theta ; E(\lambda) f)$ but in cueraf $\Theta ; E(\lambda j, f)$ may be a proper
 This exauple is instricitiv. the behavion of this opentor statilizes after two applicatians, and $E\left(0, f^{2}\right)=\mathbb{R}^{2}$ is not a propor susipace.
Lew: For any $f^{\prime} V-V, 0=$ han $f^{0} \leq \operatorname{le} f^{\prime} \leq$ ken $f^{2} \leq \cdots a$
Lun: Far $N \geq \operatorname{dim} Y$, her $f^{N}=$ her f^{N+1}.
Pf: Finst note chat if her $f^{N}=$ he f^{n+1} is ever satistied thici her $f^{N^{\prime} / M}=$ her f^{N+M+1} for muy $M \geq 0$: for $v \in$ her f^{N+M+1} we have $0=f^{N+M+1}(v)=f^{N+1}\left(f^{M} v\right) \Rightarrow f_{1}^{N}\left(f^{M} v\right)=0$ Second, we can't have an arcendly chain of iarpacee of leugth $>\operatorname{dim} V$. D
Cor: Far $N \geq \operatorname{dim} X, \quad V=\operatorname{lor} f^{N} \oplus \operatorname{im} \cdot f^{N}$.
Pf. Finct chicch directares: $v \in\left(\right.$ hea $\left.f^{N}\right) \cap\left(i m f^{N}\right)$ satsstier $f^{N} v=0$ and $v=f^{N} \omega_{1}$ but theu $f^{2 N} \omega=0$ implier $f^{N} \omega=0=v$.
From bere, apply the FToLA b $f^{N}: V \rightarrow V$ 口
The eotrame cace of this gots a pecial uame:
Def: f s called nilptent if $N \gg 0$ gives har $f^{N}=V\left(\right.$ ar $\left.f^{N}=0\right)$.
Rem: Build a havis of her f extend to ove of her f^{2}, \ldots, ete
f is upper-triancular with a O diaguend for the bacic.
This also leach us to conidev the "stalle" behaviar of eigenvectom.
Def: The gennalized efempace is $G(\lambda, f)=\operatorname{ker}(f-\lambda \cdot I)^{N}, N \geq \operatorname{din} V$

Generalized eigenvectors have propincier akin to classical eigeniveitons.
Lem. If v_{1}, \ldots, v_{m} are generalized eigenvector for distinct e.values $\lambda_{1}, \ldots, \lambda_{m}$, then $\left(v_{1}, \ldots, v_{m}\right)$ is a linearly nolepucdent list.
Pf: Consider a dependence $0=a, v_{1}+\ldots a_{m} v_{m}$. Let $k \geq 0$
be the largest value with $\omega=\left(f-\lambda_{1}\right)^{k} v_{1} \neq 0$, so chit $\left(f-\lambda_{1}\right) \omega=0_{3}$ witnesses w al an eigenvector. Hence, we calculate

$$
\begin{aligned}
0 & =\left(f-\lambda_{1}\right)^{k}\left(f-\lambda_{2}\right)^{n} \cdots\left(f-\lambda_{m}\right)^{n}\left(a_{1} v_{1}+\cdots+a_{m} v_{m}\right) \\
& =\left(f-\lambda_{1}\right)^{k}\left(f-\lambda_{2}\right)^{n} \cdots\left(f-\lambda_{m}\right)^{u}\left(a_{1} v_{1}\right)^{\prime} \\
& =a_{1}\left(f-\lambda_{2}\right)^{n} \cdots\left(f-\lambda_{m}\right)^{n} \omega \\
& =a_{1}\left(\lambda_{1}-\lambda_{2}\right)^{n} \cdots\left(\lambda_{1}-\lambda_{m}\right)^{n} \omega \text {, which forces } a_{1}=0 .
\end{aligned}
$$

Repeating this with other a_{j} giver $a_{j}=0$ for each $j: a$
Cor: This giver m an extensions

$$
\nexists E(\lambda, f) \leq \bigoplus_{j} G(\lambda j, f) \leq V
$$

Next time: This always an equality:

Decompositian of au apenster (8.B):
Thun: For V / \notin fruite dim $\frac{\ell}{-q}$ and $f^{\circ} \cup V \rightarrow$ a linear openefer, det λ_{1}, λ_{u} sebe the eifuralua of f. Then:-

- laal $=(4), G(2 j, f)$
(b) Each $G(\lambda, f)$ is invaniaut amider f.
(c) $(f-\lambda j)(G(\lambda ;, f)$ is nil potent.

Pf: (b) Note chait ou pif) and berplet me invavicout wulier for ańy poly. p.
Then, $G(\lambda, f)=$ heri $(f f d)^{N}$, uch a lubspace:
(c) Follows Gam the def $\frac{m}{\text {, }}$ since $G\left(\lambda_{j}, f\right)=$ her $\left(f-\lambda_{i}\right)^{N}$.

 and we wint to show $G(\lambda ; f \mid u)=G(\lambda ; f)$ " $c^{" \text { is immecliate. }}$ To get " \geq "; taker $v \in G(k, f)$ which we wnite al $v=v_{1} t$, , aud Decimpou $u=v_{2}+\cdots v_{m}$ foct $v=v_{1} t v+\cdots+v_{m}, G\left(\lambda_{1} f\right)$
 thereforcer $v_{2}=0$ expept for $v j$. Inspaticular, $v_{1}=0$, vo v$=u$, but chem $v \in G(\lambda ; f)$

So, if you are willing to tolerate qeueralized eigeuvectons, you cau exhoust Y. Our quection or then. What good is thr?
Def: The alculvaic mult plicity of $\lambda=$ is $\operatorname{dim} G(\lambda, f)$. The geomothr multiplicity of λ is $\operatorname{dim} E(\lambda f)^{\text {P }}$. (Axler juct calle the former "multiplicity
Def: Bloch matrices are matsicuenuilt by sewing smaller matricae begether. A matrixs block diagural if it'i diaganal as a blork mathix.

Con: Every d-operator admit a hairs sit. is presentation is Heck-diaguncel with U.T. Blocks.
Pf: Break V up into $\left(\oplus_{j} G(z ; f)\right.$. Then f - il| $I_{G(i, f 1}$ ailpotenil, so admit an U.T. presentation $\omega /$ zeroes one the diaqual. The same basis maker $\left.f\right|_{G(x ; f)}$ U.T. wt. Apr an the diag geneal: I]
In 8.D we will do even better thane this. Right now, though; we can already: find a went application:
Lem. If: $M=I+M$ for N nilpotect, there exist \sqrt{M}.
Pf: Taylor expand $\sqrt{1-x}$. Because N a nipotect, we anlyueed finitely many terms + cont care about convergence. I
$C_{\text {ar }}$: Any invertible oppencterf/ \& has a square root.
Pf'Decompore into block diagonal U.T. form. Each block can be written as $\lambda \cdot I+N$ for $\lambda \neq 0$ and N nibtect, hence each block hm a square root: Reassembling the Hhabeginer a square not for f.

Charauterstict Minimal Polynomials (B.C)
Def. The minimal polynomial of air operator f is the manic polynomial p of minimal degree such that $p(f)=0$.
Lem. Swhapolynomiat exacts.
Pf: Take $i=\operatorname{dime} V$. Then $\left(1, f, f^{2}, \ldots, f^{u^{2}}\right) \Uparrow$ depenclint in $\mathcal{L}(V, V)$ and we take we to be the smallest widex with ($\left.1, f, \ldots, f^{m}\right)$ dependent. The dependence gin a cavcididate polynomial: To wee uniqueness, note that the difference If two coudidate pay ${ }^{s}$ another 1 文ly ${ }^{\&}$ with lower degree. I
Rani: deg (miupoty $\left.(f) \leq R^{2}(\operatorname{dim} V)^{2}\right)^{\prime}$ by thus proof:
Def: For $f(\phi$, the characteristic polynomial of f is.

$$
\text { charpoly }\left(f \mid(x){ }_{\text {aigunvelout }}(z-\lambda)^{\operatorname{dim} a\left(\lambda_{0}+\right)}\right. \text {. }
$$

Thu (Cayley-Hamiltanl: Eton chonectensts poly nomial of f evaluated at f gives zero.
Pf: Decompose $V=\Theta ; G\left(\lambda_{j}, f\right)$, and shuffle the factor of chanpolyf (z) so that $(z-\lambda)$) dime $G(T) ; f 1$ appecons last. This hill the vector in $G(\lambda ; f) b y$ definition.
Cor: minpoly (f) \mid chorpoly (f), ane in particular dey miuroly \leq deg chorpoly."
Bf. In fact, the minimal poly divider any poly qu with $q(t)=0$.
The dinsian a fanithum gives $q=$ mine $s t r$ with $\operatorname{deg} r<\operatorname{deg}$ min aud $r(f)=r(f)+$ min $(f) \cdot s(f)=q(f)=0$, which forces $r=0$. I

Ow last result st that the minsinality of the minimal polynomial doer not remove frame it the basic feativer of the charactensti poly.

Levi: Write for the minimal polynomial. For λ a zero of pi $p(z)=(z-\lambda) \cdot q(z)$ and $p(f)(v)=(f-\lambda){ }_{j}(f)(v):=0$. By minimality, $q(f)(v) \neq 0$ for wine v sh this an e. vector of f with wiglet. A. In the other direction, if λ is an e.value of f ooh e vector v, then $O=p(f)(v)=p(\lambda) v$, hence $p(x)=0$. I

Ex: $M=\left(\begin{array}{lllll}0 & 0 & 0 & -3 \\ 1 & 0 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right), M^{2}=\left(\begin{array}{ccccc}0 & 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 6 & - \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), M^{3}=\left(\begin{array}{ccccc}0 & 0 & -3 & 0 & 0 \\ 0 & 0 & 6 & -3 & 0 \\ 0 & 0 & 0 & 6 & -3 \\ 1 & 0 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 & 0\end{array}\right)$
$M^{4}=\left(\begin{array}{ccccc}0 & -3 & 0 & 0 & 0 \\ 0 & 6 & -3 & 0 & 0 \\ 0 & 0 & 6 & -3 & 0 \\ 0 & 0 & 0 & 6 & -3 \\ 1 & 0 & 0 & 0 & 6\end{array}\right), M^{5}=\left(\begin{array}{ccc}-3 & 0 \\ 6 & 1 \\ 0 & 6 \\ 0 & 0 \\ 0 & 0\end{array}\right.$
gives the minimal prilynamial.
$\leadsto M^{5}-6 M$ il diagonal is $M^{5}-6 M+3=0$

Fact frovie Math 123. There ave 5 coot of chis pilynowial, all distinct, nose expresiable in term of radical exprestianc.

Car' Computing eigenvalues exact by is not a solvable problein.

Jordan Farm (8.D)

Piseridusty we've shown the nilpstect ape at ion admit bares in which their matiox. repreventastive a U. T. with vanishing main diagonal: Our goal today is to improve chis: we null show that we can fine a matrix thant is nasizens vic on the superdiagonel, aide there hae andy $O \sigma+1 . s$.

Lem. Far N milpistent, there acc vectors $v_{2}, \ldots, v m$ and indices k_{1}, \ldots, k_{m} such that
(a) $N^{k_{m 1}} v_{1}, \ldots, v_{1}, \ldots, N^{k_{m} v_{m}}, \ldots, v_{m}$ is a ball for V.
(b) $N^{k_{1}+1} v_{1}=\cdots=N^{k_{m}+1} v_{m}=0$.

Pf: We induct au $\operatorname{dim} V$, since $\operatorname{dim} V=1 \Rightarrow N=0$.
Since N is mi potent, N is mither injective nor subjective, and we cantarm $\left.N\right|_{\text {inn } N \text {. Applying the inductive hypsthers. }}$ we get vector $v_{1}, \ldots, v_{m} \in i m N$ and incliner k_{1}, \ldots, k_{m} satisfying $l a l$ and (b). Preimage each v_{j} to $N(u j)=v_{j}$ and trade $k j$ for $k j+1$. We claim chis is at least li.: a dependence would image bb a dependence in in N, leaving jut $N^{k_{1}+1} u_{1}, \ldots, N^{k_{n+1}} u_{m}$ nuaccometed f_{0} but there too are 1.i.. Extending do a basis gives other vector w_{1}, \ldots, w_{j} with $N \omega_{1}, \ldots . N w_{j} \in \operatorname{ive} N$, hence then can be perturbed to have the property $N \omega_{1}=\cdots=N_{\omega_{i}}=0$.

Thun: Every X-eperator $f: V \rightarrow V$, dim $V<\infty$, admix a Jardan bais. where f hai a bleck-diagerentexprestion by blonte of the form $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 \\ 0 & \lambda_{j}\end{array}\right)$.
Pf: Nilpotent eperates were haudled hy the previdur Liemma. In gueral, break up $V=\theta ; G(\lambda, f)$, and concider $\left.\left(f-\lambda_{j}\right)\right|_{G\left(\lambda_{j} . f 1\right.}$, which in milpatect. A Tordan bais for $f-\lambda_{j}$ 1 also a Jondau baisis for $f_{\text {, }}$ hence we can tabe the unian over j.

Complexificotian (9.A)
FFodiar normal form is a bout a much ac anyone know about nice presentation of complex sigerators. We wow turn b real operators, where most of ow theoreme fail bic we cannot allumie the enattence of an e eivecter. Our strategy will be to replace $f: V \rightarrow V$ vier \mathbb{R} with a complex gerereder that retain mun of the information of f.
Def: For V / π, we define $V_{k} / \nless h_{y} \quad V_{\phi}=V \oplus_{i} i V$ ".
For $f: v \rightarrow v$, we define $f_{q}: X_{q} \rightarrow v_{k}$ by $f(v$-iv' $)=f(v) t_{i} f\left(v^{\prime}\right)$.
$E_{\underline{x}}: \mathbb{R}_{\phi}^{u} \cong k^{u}$, and that preserves matrices:
hem: Reel operon aelmit invariant suspracer of dime 1 or 2 .
Pf: f_{c} has au eigenvector: $f\left(u t_{i v}\right)=\left(a+b_{i}\right)(u+i v)$
$\left.=6 u-b_{v}\right)+i\left(b_{u}+a v l\right.$. So, take $U=$ space $\{u, v\}$.
Lem: The minimal polys of f and f_{ϕ} agree.
Pf: Far p the mine poly. of $\left.f_{1} p\left(f_{k}\right)=\phi(f)\right)_{k}=0$.
Conversely, if $q \in \mathbb{C}[x]$ satiotier $q\left(f_{c}\right)=0$, then
(He $q(f)=0$, so comparing degrees forces f_{d} 's min poly $=p \phi$. I
Cor: Far $\lambda \in \mathbb{R}_{1} \lambda_{\text {s }}$ an e.value of f iff it's an e.value of f_{4}. \square
Lem: : $\left(f_{\phi}-\lambda|\psi| u\right.$ tiv) $=0$ iff $\left(f_{t}-\bar{x}\right) i(u-i v)=0$. $口$
Cor: $\lambda \in \notin 11$ an e.value of f_{\not} of $\bar{\lambda}$ is too, and their multiplicities agree.

- Car: Every real proser an ane odb-dimel pace has an e.value. I

Car: The chavacteritie polynomial of $f_{\&}$ is actually real.
If' Remember the formula char poly f $(z)=\mathbb{F}(z-\lambda)$ dime $G(\lambda, f)$
Our previou Cen says $\lambda \in \notin \mathbb{R}$ abel λ cone sequel coughs, ave these factor collect to gin

$$
(z-\lambda)^{\operatorname{din} G} G\left(\lambda_{f} f \mid(z-\bar{\lambda}) \operatorname{dim} G\left(\overline{\lambda_{f}} \mid\right)=\left(z-2 \operatorname{Re}(\lambda|z+| \lambda)^{2}\right)^{\operatorname{dim} G(\lambda f)}\right.
$$

Def'. The characteristic polynomial of a real operates is the characteristic polynomial of the complexificatian $f \&$:
Consequences: $f: V \rightarrow V$ a real aperacter.
(a) deg char poly $(f)(z)=\operatorname{dim} V$.
(b) real zeroes of char poly (f) ore real e.values of f.
(c) [Cayley-Hamilton cliarpolyf $(f)=0$.
(d) The minimum polynomial divider the char. polynomial.

Tel deg min. poly $\leq \operatorname{deg}$ chan poly.

Operaton au seal inner proquet spaces $(9,3)$
Goal: Underitaul normal real operatios the last cave of the rpectrat-type reullt.

Start juet with dime $V=2$:
Levi. Far $f: V: V$ dim $V=2$, $D, T F A F$:
(a) f normal but not self-adjoint.
(b) All in thonarmal baser presect froi $\left(\begin{array}{ll}a & x^{-b} \\ b & a\end{array}\right)$ for $i \neq 0$.

Pf: (a \rightarrow b) Stwt with an witho bair eries presucting f as $\left(\begin{array}{ll}a & b \\ b & d\end{array}\right.$. Then. $\left\|T T_{e}\right\|^{2}=\left\|T e^{2}\right\|^{2}$ mepliar $a^{2}+b^{2}=a^{2}+c^{2}$. If $b=c$, we're uelf-aidpint, $s s^{-} b=m^{c} c$ inctead Them,

$$
f^{\prime} f=\left(\begin{array}{cc}
a^{2}+b^{2} & -a b+b d \\
-a b+b b^{2} & b^{2}+d^{2}
\end{array}\right) \text { aid } f f^{*}=\left(\begin{array}{ll}
a^{2}+5 b^{2} & a b-b d \\
a b-b d & b^{2}+d^{2}
\end{array}\right) \text {, }
$$

and $f^{*} f=f_{1} f^{*}$ fercer $2 a b=2 b d$, ar $a=d$.
($b \rightarrow c$) Either (eg,e,) wath a (e_{1}; - e_{2}) doed.
($c \Rightarrow$ d) Actually do the matrix mult.
How, ne nill son want an meluctic decorinparition of Y. The following lemma asscrees ae thect thes is a save thing to do.
Lemi: Xo a fidinnuer-produrt space, $f^{\prime}: V \rightarrow V$ mormal, $U \leq V$ inveriant.
(a) UP s mvariant mudes f.
(b) U In invariact mucler f *.

$$
\text { (e) }\left(f|u|^{*}=f^{*} \mid r e .\right.
$$

(d) flu and fluo are nomal opencition.

Pf: Degin hy exteneling au arthonsomal bars of U to one of V :

$$
\left(e_{1}, \ldots, e_{m}, f_{1}, \ldots, f_{n}\right)
$$

Inside of this bass, f preseect as $\left(\frac{A}{0}\left|\frac{B}{C}\right|\right.$, since U is invariant.
But: $C_{i, j}\left\|\left.A_{i j}\right|^{2}=\sum_{j}\right\| f_{e}\left\|^{2}=G_{l}\right\| f^{*} e_{j} \|=C_{i j}\left|A_{i j}\right|^{2}+C_{i j}\left|B_{i j}\right|^{2}$, so $B 11$ the zero matrix. Invariance of U^{\perp} fillowr. Far $(b)+(d)$, the conjigate tamespre of f^{\prime} ' matrix is agaie blook-cdiagainal, whide giver invariance of U vueler f^{*} auch a calcielatiaic of f^{*} / u a
Thue Fav V a f-d \mathbb{R}-inner prochuct space, $f i V \rightarrow V$ normal iff V hes an arohonormal baiss wheris present ar bloik-ciagamal with $|x|$ sealiug horks anel 2×2 scale +rotate bloeks.
Pf: \Leftrightarrow Scaling it nstatian all commite.
(\Rightarrow) Induct ani dim: V : of har aic invasimut subppace of dime 1 ar 2 , and U^{+}winvarinet moder f. We did the 2×2 can at the byinncey. I
 arthonormal presectatione a a bloek diagouat michix al above

Pf': Iconetrier are normal, so the Thue applier. Decaune f is an ilowetry, it can't rcale auythng.

- Thimev/o prood: Real aporatior alwo achit Jordau decompositiace:.

Each Jordan blak is either (i) a complex: Jordau bloik ($\left.\begin{array}{l}\lambda \\ 0 \\ 0\end{array} \cdot \lambda\right)$ or (ii) a blach diaganal matrix itelf with racutical 2×2 blocke $\left[\begin{array}{cc}a_{i} & b_{i} \\ -b_{i} & a_{i}\end{array}\right]$ (decribing mutt. by λ) 2 the diagereial $+2 \times 2$, identity blabs an the blockiesuperdiagonal.

Trace (10.A):
As briefly advertised earlier in the vementer, some of the coefficients of the characteristic polynomial deserve special attention: the tracer anal the determinant. The trace she lea interesting of the two, so we treat it first.

Def: In the expamian $\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{n}\right)=z^{u}-\left(\lambda_{1}+\cdots+\lambda_{1}\right) z^{n-1}+\cdots$, the cerf of $-z^{n-1}>$ allied the trace of the op crater f. (It is the sum of the eivaluee, repeated by algosmair mut.)
Our main goal today is to show that then value is actually computable -culine any particular e.value alone.
spare
Def: Given a matrix M, the than of the matrix is the sum $\sum_{j=1}^{n} M_{j j}$ of its diagonal entries.
Thus. The two definstitanc of the trace agree when expaunduy fin a bari.
Lem. If A and B are matrices of the sauce size, then $\operatorname{to}(A B)=\operatorname{tr}(B A)$. $P f$ '. The '些 term on the diagonal of $A B x$ expressed by
$(A B)_{j}=\sum_{k=1}^{u} A_{j} D_{k}$. Summing ane sj, we have

$$
\operatorname{ta}_{0}(A D)=\sum_{j=1}^{n}\left(A D j j=\sum_{j=1}^{n} \sum_{k=1}^{n} A_{j} B_{k j}=\sum_{k=1}^{n} \sum_{j=1}^{n} B_{k j} A_{j k}=\sum_{k=1}^{n}(B A)_{i h h}=\operatorname{tr}(B A) \cdot \square\right.
$$

Cor: The trace of a matrix is invariant molder change of baucis.

$\mathbb{R}^{n} \xrightarrow{\equiv B_{B}-1} \quad N=B^{-1} M B, \quad B^{2} \mathbb{R}^{n}$ encoder a charge of bars.
Hence, $\left.\operatorname{tr}(A)=\operatorname{tr}\left(B^{-1} M B\right)\right)=\operatorname{tr}\left((M B) B^{-1}\right)=\operatorname{tr}(M) . \quad \square$
Pf of Thus: Put f (or f_{ϕ}) into upper-trianyular form. There, the two definition of trace clearly agree. Coupling the to Cor, we are dome. I
This has semprosing corollaries of of oven:
Cor: tr additive: $\operatorname{tr}(M+N)=\operatorname{tr}(M)+\operatorname{tr}(N)$.
Cos: There do not exist operators $f_{1} g$ with $f_{g}-\delta f=i l$.

$$
P f: \operatorname{tr}\left(f_{g}-g^{f}\right)=\operatorname{tr}\left(f_{g}\right)-\operatorname{tr}(g f)=\operatorname{tr}\left(f_{g}\right)-\operatorname{tr}\left(f_{g}\right)=0 \text {. Meauchbile, }
$$

$$
\operatorname{tr}(i d)=\operatorname{dim} Y \neq 0 .
$$

Determinants (0.13)
Def: The determinant of au operator f is $(-1)^{\operatorname{dim}}{ }^{\text {Simar the }}$ constant wefft of it charactentic poly:
charpoly $\left.(z)=z^{n}-\operatorname{ta}(f) z^{n-1}+\cdots+(-1)^{n} \operatorname{det}(f)\right)$.
Car: (From homework): f is invertible iff $\operatorname{det}(f) \neq 0$.
Cos: The characteristic poly of f is $\operatorname{det}(z-f)$.
Pf: Note that λ, an e value of f iff $(z-\lambda)$ an e. value of $z=f$:
$-(f-\lambda)=(z-f)-(z-\lambda)$. Raining both value ta $\operatorname{dim} Y$ and taking mullipaces also hour the algebraic multiplicities match. The characterister poly of f and che determinant of z-f cher math factor-ule.

Warung: Above, we slyly traced our h-linear map $f: V \longrightarrow V$ for a $k[z]$-linear map $f_{h(z)}: V_{k[7]} \rightarrow V_{k[z]}$ a a complexilicatiane. However, $h L_{z}$ is not a field! You can make this legal esther by innuctiny modules or by rising the field $k(z)$ of rat polys.
As lar lime, we now want to start competing the determmant of operator presented ar matrices. In the diagonal caves $\operatorname{det}\left(\begin{array}{ccc}a_{11} & 0 \\ \ddots & \ddots & a_{1 m n}\end{array}\right)=a_{11} \cdot a_{22} \cdots \cdot a_{n n}$, which is also multiplicative.
 $\left(v_{1}, M v_{1}, M^{2} v_{1}, \cdots, M^{n-1} v_{1}\right)=\left(v_{1}, a_{1} v_{2}, a_{1} a_{2} v_{3}, \ldots, a_{1}, \cdots a_{n-1} v_{n}\right)$, co that the 1.: of than lit $\Rightarrow \operatorname{deg}$ min poly $\geq n$. This forcer char $=$ min $=z^{n}-a_{1} \cdots a$.

So, the determinant sememe to cave about all diagonals, not just the main one e We'll take this a it further.:

Ex: $\cdot \operatorname{det}\left(\begin{array}{l}a_{11}\end{array}\right)=a_{11} 1 . \operatorname{det}\left(\begin{array}{ll}a_{11} & a_{22} \\ a_{12} & a_{21} \\ 1<2 & <3\end{array}\right)=a_{11} a_{22}-a_{221}-a_{12}$.

Cor: Interchanging two column reverser the ign e of dit. Hence, if two columns are equal, de $=0$.
Len: For colmun rector $A_{\cdot 1}, \ldots, A_{\cdot(j-1)}, A_{\cdot(j+1)}, \ldots, A_{\cdot n}$, the map

$$
\left(A_{0, j} \in h^{n} \mid \longmapsto \operatorname{det}\left(A_{\cdot 1}\left|A_{\cdot 2}\right| \cdots \mid A \cdot u\right)\right. \text { in ear. }
$$

(That is, the determinant a a "multilimear, alternating map.) D
Cor: $\operatorname{det}(A B)=\operatorname{det}\left(A B_{1.1}\left|A D_{12}\right| \cdots \mid A B_{01}\right)$ (aet is multiplicative.)

$$
\begin{aligned}
& =\operatorname{det}\left(A \sum_{m_{1}=1}^{n} B_{m_{1}, 1} \cdot c_{m_{1}} \mid A \cdots\left(A \sum_{m_{n}=1}^{n} B_{m_{n}, n} e_{m_{n}}\right)\right. \\
& =\sum_{m_{1}} \cdots \sum_{m_{n}} B_{m_{1}, 1} \cdots B_{m_{n}, n} \cdot \operatorname{det}\left(A e_{m}|\cdot| A e_{m_{n}} \mid\right) \\
& =\sum_{c_{m 1, \ldots, m_{n} \mid \in \operatorname{prm} \underline{n}}} \\
& =\sum_{-1} \operatorname{sign}\left(m_{1}, \ldots, m_{n} \mid \operatorname{det} A \cdot B_{m_{1,1}}-B_{m_{n}, n}=\operatorname{det} A \cdot \operatorname{det} B \cdot I\right.
\end{aligned}
$$

Cor' Set of a matrix in savant mberchange of Caus, and the two notion of let agree.

Determinnits and Volume (10.13):
Today we will investigate are important geometric aspect of determinants: their connection bo volumetric properties of liniearmape.
Hexer che slogaic for today:
Thus. For $f: y \rightarrow$ Va real openest on a fid. inner prochut space, $\operatorname{det}(f)$ computers the volume of a unit cube imaged by f.

We will prove this ie two ways, according to the two ways we have developed to present linear operators.
Of" ming Gaussian elimination. We showed in a sequence of homework exercises that if can be expressed as a sequence of row and colum operation applied to the identity matrix. So, we cane compose $\operatorname{det}(f)$ by undertaveding the determinant of then operation.

- Scale - ave ald!

These all have determinant 1.
They trample the enelpoint of the
parallelopineel + the doe e not ditioni its nolwiee.

- Scale: Thea have determinant the scalar. They scale one axial of the parallelepiped, aud thur scaler it volume by the scalar.
- Swap. There have determinant -1 ming the matrix formula.

Then observations collect bo give a deconpiticue in tenne of G. Elimenatiani:
reuctidy matrix row sp \cdots sowing M

parellebpiped determined
by M.

Pf using Polar Pecoupainitian. Every f factorn ar $f=g \circ \sqrt{f^{*} f}$ for some inometry g. First, note that $\mid \operatorname{det} g l=1$, sinee the ouly eigenvaluer of g satiify $|\lambda|=1$. Second, we know that the paitive operator $\sqrt{f^{\prime f} f}$ admiot arthowormal expreniiane ar a cliagoural matrix whove behavion an a mit cube is eary to undentaned. Hace, $\operatorname{det} f=\operatorname{deff}\left(\sqrt{f^{*} f} \mid=\operatorname{det} \sqrt{f^{f f}}=\right.$ vol. of unitcube under f. \square

Our main applicatian of thas will arice neet remeeter.

The object "det $D_{p} f^{\prime \prime}$ will play a role amalogometo $u^{\prime}(t)$ in the clavrical u-substitutiau formula $\int_{u(\alpha)}^{u / \beta} f(u) d u=\int_{\alpha}^{\beta} f(u(t)) \cdot u^{\prime}(t) d t$.

Finite Fourier Analyis
You proved a bunch of results about in aux + coin x our you hah; considered as $f \underline{\underline{\mu}}[-\pi, \pi] \rightarrow \mathbb{R}$. A summary of Fownier analysis s.
(1) These cav be interpreted as $f^{\mathrm{m}} \mathrm{m}$ an the circle by giving $-\pi b \pi$:

(2) Early on, we med $e^{n i \theta}=\cos (n \theta)$ tism(n)), wo we cav interpret these

(3) The main Thun the subspace panned by $\left.\xi^{i u \theta}\right\}_{\text {is }}$ dene in all $f^{\underline{w}}$, meaning any f^{x} can be approximated arbititraily well using there sumer.

This lar theorem i beyond our reach. Today we will prove some finite analogues of it, beginning with the following:-
Def:' Let μ_{n} be the set of n He not of 1 n \$,

$$
\text { i.e., } \mu_{n}=\left\{e^{2 \pi \dot{j} / n} \in \notin \mid 0 \leq h<n\right\} \text {, }
$$

We would line analogues of the special f $\frac{\mu u}{} e^{i \mu \theta}$ from abon, whore main property seems to be $e^{i n \theta} \cdot e^{i m \theta}=e^{i(n+\operatorname{tmil} \theta}$
Def Let $e_{\ell} \in V_{\mathrm{N}}$ be the function $e_{l}\left(\xi^{k}\right)=\eta^{k l} \cdot s$
These satisfy $e_{u+m}\left(\zeta^{k}\right)=\zeta^{h(u+u)}=\zeta^{h n} \cdot \zeta^{h m}=e_{n}\left(\zeta^{k}\right)$ em $\left(\zeta^{k}\right)$.

Cor: These form abel, as theine of the night length.
Def: Given $f: \mu_{n} \rightarrow C_{1}$ is Foxier traction if f

$$
\hat{f}\left(y_{n}^{m}\right)=\frac{1}{n} \cdot \sum_{y^{k} k_{\text {en }}} f\left(\xi^{\hat{q}}\right) \cdot \zeta^{-n k}=\frac{1}{n} \cdot\left\langle f_{i, e_{m}}\right\rangle
$$

Cor: Fourier inversion stater $f\left(\zeta^{k}\right)=\operatorname{Expm}_{q_{\mu_{\mu_{k}}}} \hat{f}\left(\zeta^{m}\right) \cdot \zeta^{\text {neck }}$.

Pf: $f=\sum_{y^{m}} \hat{f}\left(\eta_{m}\right): e_{m}$, so $f\left(\xi^{k}\right)=G_{y^{m}} \hat{f}\left(\eta_{m}^{m}\right) \cdot\left(\eta^{m k}\right)$. Juiteraluate. ロ
In fact, we caul do something similar for \mathbb{C}-valued $f^{\frac{u}{4}}$ our any finite atelian sp.
Def: A finite abelian sp is a finite set A equipped $\omega /$ a comm., unital ω /inverses.
Def: A character of A is a $f^{\# 1} x: A \rightarrow \notin$ satisfying $x(a+b)=x(a) x(b)$.
Levi. Two distinct character $x \neq \rho$ satisfy $\langle x, \rho\rangle=0$.
Pf: Nicill $\left\langle x_{i} \rho\right\rangle=\frac{1}{|A|} \Xi_{a \in A} x(a) \overline{\rho(a)},=\frac{1}{|A|} \sum_{a \in A} x(a) \cdot \rho^{-1}(a)=\frac{1}{|A|} \sum_{a \in A} x \cdot e^{-T}|a|$.
We will show chr sum is zero for any $x \neq \rho^{\#}$ w that $x e^{-1}=y \neq 0$.
Clove $a b \in A$ with $y(b) \neq 1$. Then $y(b) \Sigma_{n} y(a)=\Sigma_{a} y(a+b)=\Sigma_{i} y(a), s o=0$. I
Thu: The character of A farm a basis for $V_{A}=\{A \rightarrow \not \subset\}$.
Lam: Committing families of minty trausformatiaus are simultanconoly diag he.

$\left.F_{\text {ar }} u>1, V=\theta\right), E\left(A_{i}, f_{x}\right)$ On call eicupraca, wave
$f_{n} f_{i}\left(v_{j}\right)=f_{i} f_{n}\left(v_{p}\right)=f_{i}\left(\lambda_{j} v_{j}\right)=\lambda_{j} f_{i}\left(v_{j}\right)$, so $f_{i}\left(v_{j}\right) \in E\left(\lambda_{j}, f_{n}\right) . O_{n} E\left(\lambda_{j}, f_{n}\right)$,

Pf of Than : Set $T_{A}: V_{A} \rightarrow V_{A}$ by $\left(T_{a} f(x)=f(a+x)\right.$. There commute, so diag iss them, in a basis $\left(v_{6}\right) \in V_{A}$. Pick any such v_{y} - then $v(1) \neq 0$, since otherwise $v(a)=(\operatorname{Tav})(1)=\lambda_{a} v(1)$, but $\lambda_{a} \neq 0$. Define $w(x)=\lambda_{x}=v(x)$ so (1).
ω_{e} claim ω a character: $\omega(\alpha)=\left(T_{a} \omega\right) b=\lambda_{a} \omega(h)=\lambda_{a} \lambda_{b}=\omega(a) \omega(b)$.
Since there are $1 G 1$ many v giving rive to $1 G$ (many \perp wis, we are done. I
Cor: Set $f(e)=\frac{1}{a} \cdot \sum_{a \in A} f(a) \cos _{a}$ for $e: A \rightarrow \Phi^{x}$ a chomutter. Then $f=\sum_{\substack{\text { choratem } \\ \text { e }}}^{\infty} f(e)$; the Fourier inversion formula.

The Fart Fourier Tranferm + Complexity
Classical problem in complexity. Sorting an unsorted list. "Inertial sort". Fane a new list by insert old list element are-hy-are into a new sorted lat.
Q: How long doa thar take?
$(1, \ldots, u) \leadsto(2, \ldots, u)+(1)$
$1+\cdots+(n-1)=n(n-1)-\frac{1}{2}$.
$\operatorname{mos}(3, \ldots, n)+(1,2) \quad 1 \operatorname{cosp}$
Merge went. Take a list, divide it into 2 halves, mergernt thor, wi on them.
Q. How long doer this take? Call it $f(u)$. Then $f(u)=2 f(u / 2)+u$.

Picture this like:

Another problem. multiplication. $\frac{x 5821}{2642}=15,379082$ requiter $166^{\circ} \mathrm{s}$, and wane additions. In general, this algaithm taker $\pi^{2}+2 m$ items. Today we will are the material from last tine to improve the...
Observation 1. Multapicatian of integers s close do inultiplicatian of polynomials - just with a carrying step. Naively, wetting

$$
\begin{aligned}
& p=2 x^{3}+6 x^{3}+4 x+2 \text { and } y=5 x^{3}+8 x^{2}+2 x+1 \text {, we have } p(10)=2642 \text { a } \\
& q(10)=582 \text {, and (frig) (} 10 \text { t }=\text { the pisduct: }
\end{aligned}
$$

of dejrien-1
Observation 2. Polynomials ${ }^{\text {ane }}$ determined ha their values an any n points. In particular n, pichus the posits μ_{n} frame lat time, $P_{u-1} \xrightarrow{a} \mu_{u}$ is a linear esomarplum. It: also multiplicative!: $p\left(y^{k}\right) q\left(\xi^{k}\right)=(q \cdot q)\left(\xi^{k}\right)$. So, if ne want do mut, by two pity, we just multiply their points.
Obernotian 3: The map a sa farm of the Foinier tramitorne:

$$
\left.a(p)\left(\xi^{k}\right)=p\left(\xi^{k}\right)=\sum_{j=0}^{n-1} p \cdot j\right\}^{k}=\left(p j, e_{-k}\right)=\hat{p}(k)
$$

Observation 4：Computing ${ }_{n}{ }_{n}$ in mon ce efficient than you might think． aud eld parts，which reappear when cosigning different ilk．This ergaizes int a scheme：$p_{k \mid}=p_{k}, p_{A l}=p_{0 t} \mid s^{\prime}+3^{2^{l(k)} \cdot 5} p_{1 *}\left(s^{\prime}, p_{-12}=\hat{p}(k)\right.$ ．
This organizer into wight meltiplicatiane．
Obsernotinue 5：The Fowier inverian formula as to similar to the formula for 要部（1）that the same trick mill work for it．

Ex：Take $p(x)=2 x^{3}+6 x^{2}+4 x+2$ and $q(x)=5 x^{3}+8 x^{2}+2 x+1$ ．

Observation 6：Ti a computer miplementatian，we can work mod $2^{N} \pm 1$ ， so that 2 an $N^{t h}$ ar $2 N^{\text {dh }}$ root of minty $(=\eta 1$ ，wo that mu H ． In Y is also fast．We can also recuse on the＂pq／iose＂step． The all，this nus $x \cdot \lg u \cdot \lg (\lg n)$ time．

Dicichlaty theorem
At the start of this class, we proved an anciéect theorem:
Thai: There are infinitely many prove ncwubere:
It is cary bo ak for more information than thus. Far instance;, Q: Are there ${ }^{00} 7$ many rimes $\equiv 1 \bmod 4$? $\equiv 3 \mathrm{~mol} 4$? Pf of $\equiv 3^{2}$ mod 4 : Assume there are finitely many; and let ($3, p_{1}, \ldots$ pet be an enmmenatian. Set $N=4 p_{r} \ldots p_{n}+3$. Since two pines $\equiv 1$ mod 4 waltisly to $=$ Eimad 4 , there mun the a prime $\equiv 3$ mad 4 dividing N. Canc be 3 or pi for any j. I
There ss no known etumeutany proof of the other case. There is ave analytic proof, which today we will dereribe. The jumping-off point a:
Thun (Euler): There a a factavization $\xi(\$) \sum_{u} \frac{1}{u^{s}}=\pi_{p}\left(1-p^{-5}\right)^{-1}$.
Pf idea: $\frac{1}{1-p^{-s}}$ expands as $1+\frac{1}{p^{s}}+\frac{1}{\left(p^{2}\right)^{2}}+\cdots$. Eacli term $\frac{1}{u^{s}}$ correspond e do exact shy ave product term in factorizatiace into primuce. II Thus. The series $\sum_{n} \frac{1}{p}$ diverges. (Note this \Rightarrow ancient theorem.)

Pf: $\log \zeta(s)=\log \sum_{i x} \frac{1}{u^{3}}=\log \Pi_{p}\left(1-p^{-3}\right)^{-1}=-\sum_{p} \log \left(1 p^{-3}\right)$.
The Taylor formula for \log giver $-\sum_{i p} \log \left(1-p^{-5}\right)=-\sum_{\rho}\left(\frac{-1}{r^{s}}+O\left(1 / p^{2 s}\right)\right)$
$=E_{p} 1 / p+O(1)$. Finally let $s \rightarrow 1^{+}$.
It twos out that this is the style of orgenment that gecioralizee to handle the care $p=1 \bmod 4$, and the modification is ctleroule finite fourier analysis. Consider the $f^{u} x:(\pi / 4)^{x} \longrightarrow \not \subset$ defined In $x(1)=1, x(-1)=-1$. This "extends" to allot R by $x(u)=\left\{\begin{array}{l}0 \text { if } u \text { even, } \\ 1 \\ -1 \text { if } u=1 \text { mod } u, ~ D e f m e ~\end{array} L_{x}(s)=\sum_{u=1}^{\infty} \frac{x(u)}{u^{s}}=1-\frac{3}{u^{s}}+\frac{5}{n^{3}}-\frac{7}{u^{3}}+\cdots\right.$, and $L_{X}(1)=\pi / 4$. The same " P isles" gives $L_{X}(s)=\prod_{p} \frac{1}{1-\frac{X(p)}{p s s}}$.

Taking $l_{\text {g es giver }} \log _{x}(1)=\operatorname{Ein}_{\mathrm{p}} x(p) \mathrm{p}^{-s}+0(1)$, and the
 convergent as $\rightarrow 1^{+}$. We break it inca pieces.

$$
\sum_{p}^{1} x(p) p^{-s}=\sum_{p=1 \text { mash }} \frac{1}{s}+\sum_{p=3 \text { male }} \frac{-1}{p^{s}} \text {. We know } \sum_{p} \frac{1}{p^{s}} \rightarrow \infty \text { as } s \rightarrow 1^{+} \text {, }
$$

o addie then giver $2 \cdot \sum_{p \equiv 1} \frac{1}{p^{s}} \rightarrow \infty$ as $1 \longrightarrow 1+$.
The general Theorem e is:
Thun (Dirichletf: For l and q caprine, there exist $o \infty$ by many primes of the form $p=l+g: k, k \in \mathcal{R}$.

Were not going to prove thus, bit it feel a lot like the proof jut given.
The main poiret in that $\delta_{l}(n)=\left\{\begin{array}{l}1 \text { it } u \equiv l \text { mod } q \text { admit a finite } \\ 0 \text { ow }\end{array}\right.$
Fonvierexpancian in fermi of character $x:(\mathbb{R} / q)^{*} \rightarrow \mathbb{Z}$, aud each nontrivial suet χ gives nix do $a^{(t)}$ function $L_{X}(s) \longrightarrow \neq 0, \neq \infty$ for $\rightarrow 1^{+}$.
Once your male it the for, you can mimic the rut of the proof a hove.
The real meat is in the convergence of $L_{x}(1)$; we could maunally calculate it, but in general this i not passible.

