










































The map is supposed to be *bilinear*, meaning:
    <v + v’, w> = <v, w> + <v’ + w>, 
    <v, w + w’> = <v, w> + <v, w’>,
    <kv, w> = k<v, w> = <v, kw>.

The evaluation pairing
     V x V^* –> K
has these properties.









































g on im sqrt(f^* f) is an isometry by the lemma at the start of the proof: for w = sqrt(f^* f)(v), ||w|| = ||sqrt(f^* f) v||, and also ||g(w)|| = ||f(v)||, and the lemma says these are all equal.

g on (im sqrt(f^* f))^perp carries an orthonormal basis to an orthonormal basis, which is one of the TFAE conditions from the previous lecture.

This Remark is nonsense: g is not necessarily diagonalizable. This doesn’t matter. We’re going to ignore g, diagonalize f, and see what happens.









Alternatively, you could note that W_N = ker (f - lambda_j)^N = ker (f - lambda_j)^(N+1) = W_(N+1), and that (f - lambda_j) carries W_(N+1) into W_N, so that W_(N+1) = W_N is invariant.
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