# Homework \#9 

Math 25a
Due: November 9nd, 2016

## Guidelines:

- You must type up your solutions to this assignment in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$. There's a template available on the course website.
- This homework is divided into four parts. You will turn each part in to a separate CA's mailbox on the second floor of the science center. So, be sure to do the parts on separate pieces of paper.
- If your submission to any particular CA takes multiple pages, then staple them together. If you don't own one (though you should), a stapler is available in the Cabot Library in the Science Center.
- Be sure to put your name at the top of each part, so that we know who to score!
- If you collaborate with other students, please announce that somewhere (ideally: next to the problems you collaborated on) so that we don't get suspicious of hyper-similar answers.

Failure to meet these guidelines may result in loss of points. (Staple your pages!)

## 1 For submission to Thayer Anderson

Problem 1.1. Suppose for $f: V \rightarrow V$ that $v \in V$ and $m \in \mathbb{N}$ satisfy $f^{m}(v)=0$ but $f^{m-1}(v) \neq 0$. Prove that the following list is linearly independent:

$$
v, f v, f^{2} v, \ldots, f^{m-1} v
$$

Problem 1.2. Suppose $f: V \rightarrow W$ is a linear function between inner product spaces. Show that $f^{*} f$ is a positive operator on $V$ and $f f^{*}$ is a positive operator on $W$.

Problem 1.3. Suppose $f: V \rightarrow V$ is a linear function on a finite-dimensional inner product space. Define a new pairing by

$$
\langle u, v\rangle_{f}=\langle f u, v\rangle .
$$

Show that $\langle-,-\rangle_{f}$ is an inner product on $V$ if and only if $f$ is an invertible positive operator.

## 2 For submission to Davis Lazowski

Problem 2.1. Suppose $f, g: V \rightarrow V$ are linear operators and suppose that $f g$ is nilpotent. Prove that $g f$ is also nilpotent.

Problem 2.2. Suppose that $f: V \rightarrow V$ is a linear function on an inner product space, and suppose that there exists an orthonormal basis $e_{1}, \ldots, e_{n}$ of $V$ such that $\left\|f e_{j}\right\|=1$ for each $j$. Either show that $f$ must be an isometry or give a counterexample.

Problem 2.3. Fix vectors $u, x \in V$ in a finite-dimensional vector space $V$ with $u \neq 0$. Consider an operator $f: V \rightarrow V$ defined by

$$
f(v)=\langle v, u\rangle \cdot x
$$

(as in one of the summands in singular value decomposition). Prove the following:

$$
\sqrt{f^{*} f}(v)=\frac{\|x\|}{\|u\|}\langle v, u\rangle \cdot u
$$

Problem 2.4. Suppose $f: V \rightarrow V$ has singular value decomposition given by

$$
f(v)=s_{1}\left\langle v, e_{1}\right\rangle f_{1}+\cdots+s_{n}\left\langle v, e_{n}\right\rangle f_{n}
$$

for $s_{1}, \ldots, s_{n}$ the singular values of $f$ and $e_{1}, \ldots, e_{n}$ and $f_{1}, \ldots, f_{n}$ orthonormal bases of $V$. Prove the following effects:

1. $f^{*}(v)=s_{1}\left\langle v, f_{1}\right\rangle e_{1}+\cdots+s_{n}\left\langle v, f_{n}\right\rangle e_{n}$.
2. $f^{*} f(v)=s_{1}^{2}\left\langle v, e_{1}\right\rangle e_{1}+\cdots+s_{n}^{2}\left\langle v, e_{n}\right\rangle e_{n}$.
3. $\sqrt{f^{*} f}(v)=s_{1}\left\langle v, e_{1}\right\rangle e_{1}+\cdots+s_{n}\left\langle v, e_{n}\right\rangle e_{n}$.
4. Lastly, suppose $f$ is invertible. Show also $f^{-1}(v)=s_{1}^{-1}\left\langle v, f_{1}\right\rangle e_{1}+\cdots+s_{n}^{-1}\left\langle v, f_{n}\right\rangle e_{n}$.

## 3 For submission to Handong Park

Problem 3.1. Prove or give a counterexample: the set of nilpotent operators on $V$ is a vector subspace of $\mathcal{L}(V, V)$.

Problem 3.2. For $f: V \rightarrow V$ a linear operator on a finite-dimensional inner product space, write $s_{\min }$ for its smallest singular value and $s_{\text {max }}$ for its largest singular value.

1. Prove the inequalities $s_{\text {min }}\|v\| \leq\|f v\| \leq s_{\text {max }}\|v\|$.
2. For any eigenvalue $\lambda$ of $f$, show $s_{\text {min }} \leq|\lambda| \leq s_{\text {max }}$.
3. Let $g: V \rightarrow V$ be another linear operator with minimum and maximum singular values $t_{\text {min }}$ and $t_{\text {max }}$ respectively. Show that the maximum singular value of the composite $g f$ is bounded above by $s_{\max } \cdot t_{\max }$ and that the maximum singular value of the sum $g+f$ is bounded above by $s_{\max }+t_{\max }$.

Problem 3.3. Suppose that $V$ is a finite-dimensional inner product space, $f: V \rightarrow V$ is a linear operator, $g: V \rightarrow V$ is an isometry, and $h: V \rightarrow V$ a positive operator satisfying $f=g \circ h$. Show that $h=\sqrt{f^{*} f}$.

## 4 For submission to Rohil Prasad

Problem 4.1. Suppose $f: V \rightarrow V$ is a linear operator on a finite-dimensional inner product space. Show that $\operatorname{dimim} f$ equals the number of nonzero singular values of $f$.

Problem 4.2. Last week in Problem 4.2, you considered the inner product space of continuous functions on $[-\pi, \pi]$, as well as the subspace

$$
U_{n}=\operatorname{span}\{1, \cos x, \cos 2 x, \ldots, \cos n x, \sin x, \sin 2 x, \ldots, \sin n x\}
$$

and the double-derivative operator $D^{2}: U_{n} \rightarrow U_{n}$. Show that $-D^{2}$ is a positive operator.
Problem 4.3. Define $f: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ by $f\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{2}, z_{3}, 0\right)$. Prove that $f$ has no square-root.

