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1 For submission to Thayer Anderson

Problem 1.1. Suppose for f : V → V that v ∈ V and m ∈ N satisfy fm(v) = 0 but fm−1(v) 6= 0. Prove
that the following list is linearly independent:

v, fv, f2v, . . . , fm−1v

Solution. Suppose for the sake of contradiction that the given list is linearly dependent. Then there exist
some a0, . . . , am−1 not all 0 such that

a0v + a1f(v) + · · ·+ am−1f
m−1(v) = 0

Let k be minimal such that the ak 6= 0. Then consider

0 = fm−k−1(0) = fm−k−1
(
akf

k(v) + · · ·+ am−1f
m−1(v)

)
= akf

m−1(v) + ak+1f
m(v) + · · ·+ am−1f

m+k−1(v)

= akf
m−1(v)

Since fm−1(v) 6= 0 it follows that ak = 0. This is a contradiction and therefore the list must be linearly
independent. (TA)

Problem 1.2. Suppose f : V → W is a linear function between inner product spaces. Show that f∗f is a
positive operator on V and ff∗ is a positive operator on W .

Solution. To prove that f∗f is a positive operator we will prove that f∗f is self-adjoint and satisfies 〈fv, v〉 ≥
0 for all v ∈ V . We prove the the second criteria first. Consider

〈f∗fv, v〉 = 〈fv, fv〉

This equality comes from Problem 2.2 on Homework 8. It follows that 〈fv, fv〉 ≥ 0 by positive-definiteness.
Moreover, 〈fv, fv〉 ∈ R - we will need this fact in a moment. To prove that f∗f is self-adjoint, let g be its
adjoint and consider

〈(f∗f − g)v, v〉

for arbitary v ∈ V . We have

〈(f∗f − g)v, v〉 = 〈f∗f, v〉 − 〈gv, v〉

Then applying the definition of the adjoint:

〈f∗f, v〉 − 〈gv, v〉 = 〈f∗f, v〉 − 〈v, f∗fv〉

Since 〈f∗fv, v〉 ∈ R it follows that 〈f∗fv, v〉 = 〈v, f∗fv〉 which gives:

〈(f∗f − g)v, v〉 = 0

for all v ∈ V . This means that f∗f = g. This completes the proof. The proof of the other direction is
virtually identical. Let me know if you want to see it. (TA)
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Problem 1.3. Suppose f : V → V is a linear function on a finite-dimensional inner product space. Define
a new pairing by

〈u, v〉f = 〈fu, v〉.

Show that 〈−,−〉f is an inner product on V if and only if f is an invertible positive operator.

Solution. First we prove the forwards direction. Suppose that f is an invertible positive operator. Then we
need to prove that 〈−,−〉f is a conjugate-symmetric, positive-definite, sesqui-linear form. First we prove
conjugate-symmetry. Consider

〈u, v〉f = 〈fu, v〉 = 〈v, fu〉

Since f is positive, it is self adjoint, so we have

〈v, fu〉 = 〈fv, u〉 = 〈v, u〉f

This proves the desired result. Next we prove positive-definiteness. Suppose v ∈ V . Then

〈v, v〉f = 〈fv, v〉 ≥ 0

with inequality by the definition of positivity. Furthermore, f has a positive (and hence self-adjoint) square
root. Call that square root g. Then we have

〈fv, v〉 = 〈g ◦ gv, v〉 = 〈gv, gv〉

Thus suppose 〈v, v〉f = 0. It follows that 〈gv, gv〉 = 0 and so gv = 0. But g is invertible so v = 0. This
proves positive-definiteness. Now we prove linearity in the first argument. Suppose that c ∈ K (the field of
scalars - be it C or R.) THen

〈cu, v〉f = 〈f(cu), v〉 = 〈cf(u), v〉 = c〈fu, v〉 = c〈u, v〉f

We see that 〈−,−〉f inherits linearity from f . This will remain the case for addition. This completes the
first direction of the proof.

Suppose instead that f induces an inner product as given. First we consider

0 ≤ 〈v, v〉f = 〈fv, v〉

this gives us that 〈fv, v〉 ≥ 0 for all v, as required in the definition of positivity. Note also that 〈fv, v〉 is
real and so

〈fv, v〉 = 〈fv, v〉

Then consider the following, for arbitrary v ∈ V :

〈(f − f∗)v, v〉 = 〈fv, v〉 − 〈f∗v, v〉
= 〈fv, v〉 − 〈v, fv〉

= 〈fv, v〉 − 〈fv, v〉 = 0

with the final inequality coming from our last lemma. Thus f − f∗ = 0 and therefore f is self-adjoint.
Combined with our other proof, we see that f is positive. This completes the proof. (TA)
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2 For submission to Davis Lazowski

Problem 2.1. Suppose f, g : V → V are linear operators and suppose that fg is nilpotent. Prove that gf
is also nilpotent.

Solution. If fg is nilpotent, then (fg)n = 0 for some n. In this case,

0 = g0f = g(fg)nf = (gf)n+1 (DL)

Problem 2.2. Suppose that f : V → V is a linear function on an inner product space, and suppose that
there exists an orthonormal basis e1, . . . , en of V such that ‖fej‖ = 1 for each j. Either show that f must
be an isometry or give a counterexample.

Solution. Fix i. Let f(ej) = ei for all i.
Then

||f(ej)|| = ||ei|| = 1

But 〈ej , ej+1〉 = 0, yet 〈fej , fej+1〉 = 〈ei, ei〉 = 1. (DL)

Problem 2.3. Fix vectors u, x ∈ V in a finite-dimensional vector space V with u 6= 0. Consider an operator
f : V → V defined by

f(v) = 〈v, u〉 · x

(as in one of the summands in singular value decomposition). Prove the following:

√
f∗f(v) =

‖x‖
‖u‖
〈v, u〉 · u.

Solution. We can write f = g ◦
√
f∗f by SVD. Therefore,

g−1(f(v)) = g−1(〈v, u〉x) = 〈v, u〉 g−1(x) =
√
f∗f(v)

Now, g−1(x) = ||x||
||u|| ũ, for some ũ, because it is an isometry. We need to show that ũ = u. It’s enough to show

that g−1(x) ∈ span(u), or, equivalently, that g(u) ∈ span(x). This is true by f = g ◦
√
f∗f if u ∈ im

√
f∗f.

Equivalently, we need to show that u ∈ im f∗f. But by definition

〈fv, w〉 = 〈v, f∗w〉
〈fv, w〉 = 〈v, u〉 〈x,w〉

=⇒ f∗ = 〈w, x〉u

So that u ∈ im f∗f, therefore done. (DL)

Problem 2.4. Suppose f : V → V has singular value decomposition given by

f(v) = s1〈v, e1〉f1 + · · ·+ sn〈v, en〉fn

for s1, . . . , sn the singular values of f and e1, . . . , en and f1, . . . , fn orthonormal bases of V . Prove the
following effects:

1. f∗(v) = s1〈v, f1〉e1 + · · ·+ sn〈v, fn〉en.

2. f∗f(v) = s21〈v, e1〉e1 + · · ·+ s2n〈v, en〉en.

3.
√
f∗f(v) = s1〈v, e1〉e1 + · · ·+ sn〈v, en〉en.

4. Lastly, suppose f is invertible. Show also f−1(v) = s−11 〈v, f1〉e1 + · · ·+ s−1n 〈v, fn〉en.
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Solution. 1. In polar decomposition, f = g ◦
√
f∗f . Therefore, f∗ =

√
f∗f

∗ ◦ g∗ =
√
f∗f ◦ g−1.

We can decompose v as

v =

n∑
j=1

〈v, fj〉 fj

Because g(ej) = fj , therefore g−1(fj) = ej . Therefore

g−1v =

n∑
j=1

〈v, fj〉 ej

Applying the singular values: √
f∗f ◦ g−1v =

n∑
j=1

sj 〈v, fj〉 fj

2. We have that

f∗f(v) = f∗(
n∑

j=1

sj 〈v, ej〉 fj)

So it’s enough to show that f∗(fj) = sjej . But f∗(fj) =
√
f∗f ◦g−1(fj) =

√
f∗fej = sjej , as required.

3. g−1 ◦ f =
√
f∗f . g−1(fj) = ej . The rest comes out linearly, so

g−1(f(v)) = g−1(

n∑
j=1

sj 〈v, ej〉 fj) =

n∑
j=1

sj 〈v, ej〉 ej

As required.

4. We have that
f−1 =

√
f∗f

−1
◦ g−1

Then

f−1(v) = f−1(

n∑
j=1

〈v, fj〉 fj)

=
√
f∗f

−1
(

n∑
j=1

〈v, fj〉 ej)

=

n∑
j=1

s−1j 〈v, fj〉 ej

As required. (DL)

3 For submission to Handong Park

Problem 3.1. Prove or give a counterexample: the set of nilpotent operators on V is a vector subspace of
L(V, V ).
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Solution. This statement is false, and here’s an interesting counterexample that demonstrates why. Consider
the following field, which we’ll call Z/2Z: in other words, the integers with modular arithmetic mod 2. This
is a field consisting of exactly 0 and 1, and is defined as follows:

0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 0

and
0 · 0 = 0, 0 · 1 = 0, 1 · 1 = 1

We can easily check that all the rules for a field to satisfy hold here. For instance, each non-zero element
has a multiplicative inverse (only 1 is non-zero, and 1 · 1 = 1), and each element has an additive inverse
(0 + 0 = 0, and 1 + 1 = 0). The other rules are left as an exercise.
Now, taking K, the field of scalars, to be Z/2Z, consider the vector space V = K2, and consider L(V, V )
and the set N ⊂ L(V, V ) of nilpotent operators on V . We have that

M1 =

[
0 1
0 0

]
∈ N

and that

M2 =

[
0 0
1 0

]
∈ N

since both of these matrices, when squared on (given our Z/2Z field), give us 0.
However, consider

M1 +M2 =

[
0 1
1 0

]
We have that, by the modular arithmetic of the scalars in our field,1

(M1 +M2)2 =

[
1 0
0 1

]
But then, this means that (M1 +M2)c, for any c ∈ N, is not 0 - it’s either M1 +M2 or the identity matrix
I (depending on whether we have an even or odd power).
Thus, we find that N is not closed under addition in this case, so that N ⊂ L(V, V ) is not necessarily always
a vector subspace. (HP)

Problem 3.2. For f : V → V a linear operator on a finite-dimensional inner product space, write smin for
its smallest singular value and smax for its largest singular value.

1. Prove the inequalities smin‖v‖ ≤ ‖fv‖ ≤ smax‖v‖.

2. For any eigenvalue λ of f , show smin ≤ |λ| ≤ smax.

3. Let g : V → V be another linear operator with minimum and maximum singular values tmin and
tmax respectively. Show that the maximum singular value of the composite gf is bounded above by
smax · tmax and that the maximum singular value of the sum g + f is bounded above by smax + tmax.

Solution. 1. We have that f has a singular value decomposition as follows: if s1, ..., sn are the singular
values for f ,

f(v) = s1〈v, e1〉f1 + ...+ sn〈v, en〉fn
for any v ∈ V , e1, ..., en an orthonormal basis of V and f1, ..., fn an orthonormal basis of V as well.
Since the fi’s form an orthonormal basis, we have that

||f(v)||2 = (s1〈v, e1〉f1)2 + ...+ (sn〈v, en〉fn)2

1ECP: Actually, this is true even over R or C. For instance, since this matrix is symmetric, (M1+M2)2 = (M1+M2)∗(M1+
M2) computes the matrix of inner products, which is the identity matrix. The mod–2 thing is also interesting, though: this is
an important case of M1M2 6= M2M1 (since otherwise (M1 +M2)2“ = ”M2

1 + 2M1M2 +M2
2 would give 0).
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But then, we know that if smax is the largest of these singular values, we must have

||f(v)||2 ≤ s2max(〈v, e1〉f1 + ...+ 〈v, en〉fn)2

so that
||f(v)||2 ≤ s2max||v||2

which proves that
||f(v)|| ≤ smax||v||

Now that we have one inequality, we can prove the other inequality by almost the same process. We
have

f(v) = s1〈v, e1〉f1 + ...+ sn〈v, en〉fn
for any v ∈ V , e1, ..., en an orthonormal basis of V and f1, ..., fn an orthonormal basis of V as well.
Since the fi’s form an orthonormal basis, we have that

||f(v)||2 = (s1〈v, e1〉f1)2 + ...+ (sn〈v, en〉fn)2

This time, if smin is the smallest singular value for f , we know that

||f(v)||2 ≥ s2min(〈v, e1〉f1 + ...+ 〈v, en〉fn)2

so that
||f(v)||2 ≥ s2min||v||2

which proves that
||f(v)|| ≥ smin||v||

and we are done.

2. We know that for any eigenvalue λ of f , we have

|λ| = ||λv|| = ||λ||||v1||+ ...+ ||λ||||vn||

where v1, ..., vn are the coordinates of v in V , if V is an n-dimensional inner product space.
Similarly, we just have that for a singular value s, we have

|s| = ||sv|| = s||v1||+ ...s||vn||

But then, if we have smin, we just have that each smin||vi|| ≤ λ||vi|| each time, giving us that smin ≤ |λ.
And if we have smax, we just have that each smax||vi|| ≥ λ||vi|| each time, giving us that smax ≥ λ, as
hoped.

3. Suppose we have an SVD of gf , then we have

gf(v) = r1〈v, e1〉h1 + ...+ rn〈v, en〉hn

for some orthonormal bases e1, ..., en and h1, ..., hn. Suppose without loss of generality that r1 is rmax,
our maximum singular value for gf .
Then consider that

||gf(v)|| = ||g(f(v))|| = tmax · ||f(v)|| = tmax · smax · ||v||

by what we proved above. If we plug in v = e1, we just have

||rmax|| = r1||h1|| = r1 ≤ tmax · smax · 1
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which proves the statement as desired. Similarly, if we have g + f , we have an SVD

(g + f)(v) = r1〈v, e1〉h1 + ...+ rn〈v, en〉hn

for some orthonormal bases e1, ..., en and h1, ..., hn. Suppose without loss of generality that r1 is rmax,
our maximum singular value for g + ff .
Then we have by the triangle inequality that

||(g + f)(v)|| ≤ ||g(v)||+ ||f(v)|| ≤ tmax||v||+ smax||v||

Then substituting e1 as before gives us

rmax ≤ tmax + smax

as desired.
(HP)

Problem 3.3. Suppose that V is a finite-dimensional inner product space, f : V → V is a linear operator,
g : V → V is an isometry, and h : V → V a positive operator satisfying f = g ◦ h. Show that h =

√
f∗f .

Solution. To begin, we consider that
f = g ◦ h

However, suppose we take the adjoint of both sides. Then we have

f∗ = (g ◦ h)∗ = h∗ ◦ g∗

Knowing that h is a positive operator, we know that h is also self-adjoint, meaning that

f∗ = h ◦ g∗

Now multiply both sides by f on the right to get

f∗ ◦ f = h ◦ g∗ ◦ g ◦ h = h ◦ idV ◦ h = h2

since g is an isometry. But then, we have √
f∗ ◦ f = h

as we hoped to prove. (HP)

4 For submission to Rohil Prasad

Problem 4.1. Suppose f : V → V is a linear operator on a finite-dimensional inner product space. Show
that dimimf equals the number of nonzero singular values of f .

Solution. Recall by the polar decomposition there exists an isometry s such that f = s
√
f∗f .

Since isometries are invertible, we find that s is injective. It follows that the kernel of s
√
f∗f is equal to

the kernel of
√
f∗f , so by rank nullity the image of f and of

√
f∗f have the same dimension.

By the Spectral Theorem, we find that
√
f∗f is diagonalizable. Therefore, it is immediate that the

dimension of its image is equal to the total number of nonzero eigenvalues. Therefore, by the above reasoning
the dimension of the image of f is equal to the total number of nonzero singular values. (RP)

Problem 4.2. Last week in Problem 4.2, you considered the inner product space of continuous functions
on [−π, π] as well as the subspace

Un = span{1, cosx, cos 2x, . . . , cosnx, sinx, sin 2x, . . . , sinnx}

and the double-derivative operator D2 : Un → Un. Show that −D2 is a positive operator.
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Solution. Recall last week we showed D∗ = −D. Therefore, we find (−D2)∗ = −(D∗)2 = −(−D)2 = −D2,
so −D2 is self-adjoint.

By Axler 7.35, to show−D2 is positive it suffices to show there exists an operatorR such that−D2 = R∗R.
Picking R = D works, since D∗D = (−D)D = −D2. (RP)

Problem 4.3. Define f : C3 → C3 by f(z1, z2, z3) = (z2, z3, 0). Prove that f has no square-root.

Solution. We will first show for a linear operator g that if kergi = kergi+1 for some i > 0, then kergi = kergj

for all j ≥ i.
It suffices to show by induction that given kergi = kergi+1, then kergi+2 is equal to both as well. Since

kergi+1 ⊂ kergi+2, we need only show the reverse inclusion. Pick v ∈ V such that gi+2(v) = 0. Then we have
gi+1(g(v)) = 0, which by our above assumption implies gi(g(v)) = 0, which implies gi+1(v) = 0 as desired.

Now assume for the sake of contradiction that there exists g such that g2 = f . Since f(1, 0, 0) = 0, we
have g(1, 0, 0) ∈ ker(g). Therefore, we have that the dimension of the kernel of g is ≥ 1. Since the dimension
of the kernel of f = g2 is clearly 1, we must have the dimension of the kernel of g is 1 as well. However, this
implies from the above reasoning that the dimension of the kernel of gi is 1 for all i.

Since g6 = f3 = 0, we arrive at a contradiction and thus f cannot have a square root. (RP)
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