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1 For submission to Thayer Anderson

Problem 1.1. Suppose for f: V — V that v € V and m € N satisfy f™(v) = 0 but f™ (v) # 0. Prove
that the following list is linearly independent:

v, fu, f2v, ceey fm_lv

Solution. Suppose for the sake of contradiction that the given list is linearly dependent. Then there exist
some ag, - . ., Gm_1 not all 0 such that

aov + a1 f(V) + -+ 4 ame1 f" 7 (0) =0
Let k£ be minimal such that the ay # 0. Then consider
0=f""F10) = f" " (anff0) + - + am-1 " (v)
= apf™ (V) + app ) + o+ o ()
= apf"H(v)

Since f™~1(v) # 0 it follows that ax = 0. This is a contradiction and therefore the list must be linearly
independent. (TA)

Problem 1.2. Suppose f: V — W is a linear function between inner product spaces. Show that f*f is a
positive operator on V and ff* is a positive operator on W.

Solution. To prove that f* f is a positive operator we will prove that f* f is self-adjoint and satisfies (fv,v) >
0 for all v € V. We prove the the second criteria first. Consider

(f*fo,0) = (fv, fo)

This equality comes from Problem 2.2 on Homework 8. It follows that (fv, fv) > 0 by positive-definiteness.
Moreover, (fv, fv) € R - we will need this fact in a moment. To prove that f*f is self-adjoint, let g be its
adjoint and consider

((f*f = g)v,v)
for arbitary v € V. We have
((f*f = g)v,v) = (f"f,v) — (gv,v)
Then applying the definition of the adjoint:
(f*f.v) = {gv,v) = (f*f,0) = (v, " fv)
Since (f* fv,v) € R it follows that (f*fv,v) = (v, f* fv) which gives:
(f*f=gv,v)=0

for all v € V. This means that f*f = g. This completes the proof. The proof of the other direction is
virtually identical. Let me know if you want to see it. (TA)



Problem 1.3. Suppose f: V — V is a linear function on a finite-dimensional inner product space. Define
a new pairing by

(u,v)f = (fu,v).
Show that (—, —)y is an inner product on V' if and only if f is an invertible positive operator.

Solution. First we prove the forwards direction. Suppose that f is an invertible positive operator. Then we
need to prove that (—,—)s is a conjugate-symmetric, positive-definite, sesqui-linear form. First we prove
conjugate-symmetry. Consider

<uv U>f = <fu,v> = <Uv fu>

Since f is positive, it is self adjoint, so we have

(v, fu) = (fv,u) = (v, u)

This proves the desired result. Next we prove positive-definiteness. Suppose v € V. Then

<1},11>f = <f’U,’U> >0
with inequality by the definition of positivity. Furthermore, f has a positive (and hence self-adjoint) square
root. Call that square root g. Then we have
(fv,v) = (gogv,v) = (gv, gv)

Thus suppose (v,v)y = 0. It follows that (gv,gv) = 0 and so gv = 0. But g is invertible so v = 0. This
proves positive-definiteness. Now we prove linearity in the first argument. Suppose that ¢ € K (the field of
scalars - be it C or R.) THen

{eu,v) 5 = (flew),v) = (cf(u),v) = c{fu,v) = c{u, v)

We see that (—,—) inherits linearity from f. This will remain the case for addition. This completes the
first direction of the proof.
Suppose instead that f induces an inner product as given. First we consider

0< (v,0)5 = (fv,0)

this gives us that (fv,v) > 0 for all v, as required in the definition of positivity. Note also that (fv,v) is
real and so

(fv,0) = (fv,v)
Then consider the following, for arbitrary v € V:
<(f - f*)’l)7’l)> = <f’l),’l)> - <f*va U)
= <fva> - <’U,f'l}>
= (fv,v) = (fv,v) =

with the final inequality coming from our last lemma. Thus f — f* = 0 and therefore f is self-adjoint.
Combined with our other proof, we see that f is positive. This completes the proof. (TA)



2 For submission to Davis Lazowski

Problem 2.1. Suppose f,g: V — V are linear operators and suppose that fg is nilpotent. Prove that gf
is also nilpotent.

Solution. If fg is nilpotent, then (fg)™ = 0 for some n. In this case,

0=g0f =g(fo)"f = (¢f)""" (DL)
Problem 2.2. Suppose that f: V — V is a linear function on an inner product space, and suppose that
there exists an orthonormal basis eq,...,e, of V such that || fe;|| = 1 for each j. Either show that f must

be an isometry or give a counterexample.

Solution. Fix i. Let f(e;) = e; for all 4.
Then

(eIl = llesl| =1
But (e;,ej41) =0, yet {fe;, fej41) = (e;,e;) = L. oL

Problem 2.3. Fix vectors u,z € V in a finite-dimensional vector space V with u # 0. Consider an operator
f: V. — V defined by

fw) = (v,u)- =
(as in one of the summands in singular value decomposition). Prove the following:
77w) = 1wy
[l

Solution. We can write f = g o +/f*f by SVD. Therefore,

97 (f) = g7 ((v,u) 2) = (v,u) g7 (@) = V/ [ f(v)
— =l

Now, g~ (x) = Wﬁ, for some @, because it is an isometry. We need to show that @ = u. It’s enough to show

that g~!(x) € span(u), or, equivalently, that g(u) € span(x). This is true by f = g o /f*f if u € im Vf*f.
Equivalently, we need to show that u € imf*f. But by definition

<f1}, ’U)> = <’U, f*w>
(fv,w) = (v, u) (z,w)

= "= (w,z)u
So that u € im f*f, therefore done. (DL)
Problem 2.4. Suppose f: V — V has singular value decomposition given by
f) =s1{v,eryfi+ -+ sn(v,en) fn

for s1,...,s, the singular values of f and ey,...,e, and fi,..., f, orthonormal bases of V. Prove the
following effects:

1. f*(v) =s1(v, fi)er + - + sn{v, fr)en.

2. f*f(v) = s2(v,e1)er + -+ 52 (v, en)en.

3. V() =s1{v,er)er + -+ + sp (v, en)en.

4. Lastly, suppose f is invertible. Show also f~'(v) = sy (v, fi)er + - + 5, (v, fn)en.



Solution. 1. In polar decomposition, f = g o+/f*f. Therefore, f* = \/f*f og* =/ F*fog '

We can decompose v as

Because g(e;) = f;, therefore g~

Applying the singular values:

2. We have that

n

o= (0. f;) f;

Jj=1

1(f;) = ej. Therefore

<Uv fj> €;j

1

n

J

Vitfegv=> s (v, f;)f;
j=1

= f*(z sj (v, ej5) f;)

So it’s enough to show that f*(f;) = sje;. But f*(f;) = Vf*fog ' (f;) = Vf*fe; = s;e;, as required.
3. g7 o f=VF*F. g7 (f;) = ;. The rest comes out linearly, so

—1

As required.
4. We have that

Then

As required.

Esjvejf] Es]ve]j

n
_ 2 : -1
= Sj

j=1

3 For submission to Handong Park

Problem 3.1. Prove or give a counterexample: the set of nilpotent operators on V is a vector subspace of

LV, V).



Solution. This statement is false, and here’s an interesting counterexample that demonstrates why. Consider
the following field, which we’ll call Z/2Z: in other words, the integers with modular arithmetic mod 2. This
is a field consisting of exactly 0 and 1, and is defined as follows:

0+0=0,0+1=1,1+1=0

and
0-0=0,0-1=0,1-1=1

We can easily check that all the rules for a field to satisfy hold here. For instance, each non-zero element
has a multiplicative inverse (only 1 is non-zero, and 1-1 = 1), and each element has an additive inverse
(0+0=0, and 14+ 1 =0). The other rules are left as an exercise.

Now, taking K, the field of scalars, to be Z/27Z, consider the vector space V = K?2, and consider £(V,V)
and the set N C L(V, V) of nilpotent operators on V. We have that

M1—|:8 (1):|€N

and that

M2:|:(])_ 8:|€N

since both of these matrices, when squared on (given our Z/27Z field), give us 0.
However, consider

0 1
=[]

We have that, by the modular arithmetic of the scalars in our field,?

(M+%ﬁzﬁﬂ

But then, this means that (M; + Ms)¢, for any ¢ € N, is not 0 - it’s either My + M or the identity matrix
I (depending on whether we have an even or odd power).

Thus, we find that N is not closed under addition in this case, so that N C £(V, V) is not necessarily always
a vector subspace. (HP)

Problem 3.2. For f: V — V a linear operator on a finite-dimensional inner product space, write sy, for
its smallest singular value and spyax for its largest singular value.

1. Prove the inequalities Spin||v|| < [|fv]] < Smax||v]-
2. For any eigenvalue A of f, show spmin < |A] < Smax-

3. Let g: V — V be another linear operator with minimum and maximum singular values tp;, and
tmax respectively. Show that the maximum singular value of the composite gf is bounded above by
Smax * tmax and that the maximum singular value of the sum g + f is bounded above by Smax + tmax-

Solution. 1. We have that f has a singular value decomposition as follows: if sy, ..., s, are the singular
values for f,

f) =s1{v,en) fi+ ... + snlv,en) fn

for any v € V, ey, ..., e, an orthonormal basis of V' and fi, ..., f,, an orthonormal basis of V' as well.
Since the f;’s form an orthonormal basis, we have that

1f@)IP = (s1(v,ex)f1)* + . + (sn (v, en) fu)®

1ECP: Actually, this is true even over R or C. For instance, since this matrix is symmetric, (M1 + M2)2 = (M1 + M2)* (M1 +
M3) computes the matrix of inner products, which is the identity matrix. The mod-2 thing is also interesting, though: this is
an important case of My My # MaM; (since otherwise (M1 + Mg)z“ =7 M12 + 2M1 Ms + M22 would give 0).




But then, we know that if sy.x is the largest of these singular values, we must have

1f ()1 < spax (v, ex) fr + . + (v, en) fn)?

so that
1F )17 < Shasl 0l

which proves that
[F ()] < Smax][v]|

Now that we have one inequality, we can prove the other inequality by almost the same process. We
have
f(’l)) = 81<U7 el>f1 + ...+ Sn<’l), en>fn

for any v € V, ey, ..., e, an orthonormal basis of V' and fi,..., f,, an orthonormal basis of V' as well.
Since the f;’s form an orthonormal basis, we have that

1F@)IP = (s1(v, 1) f1)* + . + (50 (v, €n) fu)®

This time, if sy, is the smallest singular value for f, we know that

||f(U)H2 > 812nin(<v7el>fl + .o+ <U7€n>fn)2

so that
F )P > sl lv]l?

which proves that
I = sminl[0]]

and we are done.
. We know that for any eigenvalue X\ of f, we have
Al = [[Aol] = [[Al[[[oa][ + .. + [[A[[[[on]]

where v1, ..., v, are the coordinates of v in V', if V' is an n-dimensional inner product space.
Similarly, we just have that for a singular value s, we have

[s| = llsvll = sllos] + .5 vn]]

But then, if we have $pyin, we just have that each smin||vi|| < AlJvs|| each time, giving us that sy < |A.
And if we have Syax, we just have that each smax||vi|| > Al|vi]| each time, giving us that smax > A, as
hoped.

. Suppose we have an SVD of ¢f, then we have
gf(v) =ri(v,e1)h1 + ... + rp(v,en)hy

for some orthonormal bases ey, ..., e, and hq, ..., h,,. Suppose without loss of generality that 1 is ryax,
our maximum singular value for gf.
Then consider that

Hgf(U)H = Hg(f(v))H = tmax Hf(v)” = tmax * Smax * ||U||

by what we proved above. If we plug in v = ey, we just have

HrmaXH - T'1||h1H =T S tmax * Smax ° 1



which proves the statement as desired. Similarly, if we have g + f, we have an SVD
(9+ f)w) =ri(v,en)hi + ... + (v, €) by,

for some orthonormal bases ey, ..., e, and hq, ..., h,,. Suppose without loss of generality that 1 is ryax,
our maximum singular value for g + ff.
Then we have by the triangle inequality that

(g + L)@ < g + 1F )] < tmax|[v]] + Smax][v]|

Then substituting e; as before gives us

rmax S tmax + smax

as desired.
(HP)

Problem 3.3. Suppose that V is a finite-dimensional inner product space, f: V — V is a linear operator,
g: V — V is an isometry, and h: V — V a positive operator satisfying f = g o h. Show that h = /f* f.

Solution. To begin, we consider that
f=goh
However, suppose we take the adjoint of both sides. Then we have
fr=(goh)*=h"og"
Knowing that h is a positive operator, we know that A is also self-adjoint, meaning that
f =hog"
Now multiply both sides by f on the right to get
ffof=hog*ogoh=hoidyoh=h?

since g is an isometry. But then, we have
Viof=h

as we hoped to prove. (HP)

4 For submission to Rohil Prasad

Problem 4.1. Suppose f : V — V is a linear operator on a finite-dimensional inner product space. Show
that dimimf equals the number of nonzero singular values of f.

Solution. Recall by the polar decomposition there exists an isometry s such that f = s\/f*f.

Since isometries are invertible, we find that s is injective. It follows that the kernel of sy/f* f is equal to
the kernel of y/f* f, so by rank nullity the image of f and of v/f*f have the same dimension.

By the Spectral Theorem, we find that /f*f is diagonalizable. Therefore, it is immediate that the
dimension of its image is equal to the total number of nonzero eigenvalues. Therefore, by the above reasoning
the dimension of the image of f is equal to the total number of nonzero singular values. (RP)

Problem 4.2. Last week in Problem 4.2, you considered the inner product space of continuous functions
on [—m, | as well as the subspace

U,, = span{l, cosz, cos 2z, . ..,cosnz,sinx,sin 2z, . .., sinnx}

and the double-derivative operator D? : U,, — U,,. Show that —D? is a positive operator.



Solution. Recall last week we showed D* = —D. Therefore, we find (—D?)* = —(D*)? = —(-D)? = —-D?,
so —D? is self-adjoint.

By Axler 7.35, to show —D? is positive it suffices to show there exists an operator R such that —D? = R*R.
Picking R = D works, since D*D = (—D)D = —D?. (RP)

Problem 4.3. Define f : C3 — C3 by f(z1, 22, 23) = (22, 23,0). Prove that f has no square-root.

Solution. We will first show for a linear operator g that if kerg® = kerg'*! for some i > 0, then kerg’ = kerg’
for all j > i.

It suffices to show by induction that given kerg’ = kerg**!, then kerg’*? is equal to both as well. Since
kergi™! C kerg**?, we need only show the reverse inclusion. Pick v € V such that g**2(v) = 0. Then we have
g1 (g(v)) = 0, which by our above assumption implies g*(g(v)) = 0, which implies ¢g"**(v) = 0 as desired.

Now assume for the sake of contradiction that there exists g such that g2 = f. Since f(1,0,0) = 0, we
have ¢(1,0,0) € ker(g). Therefore, we have that the dimension of the kernel of g is > 1. Since the dimension
of the kernel of f = ¢? is clearly 1, we must have the dimension of the kernel of ¢ is 1 as well. However, this
implies from the above reasoning that the dimension of the kernel of ¢* is 1 for all i.

Since g% = f2 = 0, we arrive at a contradiction and thus f cannot have a square root. (RP)



