Homework \#7

Math 25a
Due: October 26, 2016

Guidelines:

- You must type up your solutions to this assignment in $\mathrm{A}_{\mathrm{A}} \mathrm{EX}$. There's a template available on the course website.
- This homework is divided into four parts. You will turn each part in to a separate CA's mailbox on the second floor of the science center. So, be sure to do the parts on separate pieces of paper.
- If your submission to any particular CA takes multiple pages, then staple them together. If you don't own one (though you should), a stapler is available in the Cabot Library in the Science Center.
- Be sure to put your name at the top of each part, so that we know who to score!
- If you collaborate with other students, please announce that somewhere (ideally: next to the problems you collaborated on) so that we don't get suspicious of hyper-similar answers.

Failure to meet these guidelines may result in loss of points. (Staple your pages!)

1 For submission to Thayer Anderson

Problem 1.1. Suppose that $f, g: K^{3} \rightarrow K^{3}$ are two linear functions that each have eigenvalues 2,6 , and 7. Show that there exists a linear function $h: K^{3} \rightarrow K^{3}$ satisfying $f=h \circ g \circ h^{-1}$.

Problem 1.2. A norm on V is a function $\|-\|: V \rightarrow \mathbb{R}_{\geq 0}$ satisfying

- $\|u\|=0$ if and only if $u=0$.
- $\|k \cdot u\|=|k| \cdot\|u\|$ for any scalar k.
- $\|u+v\| \leq\|u\|+\|v\|$.

In this problem, we will show that when a norm arises from an inner product by $\|v\|=\sqrt{\langle v, v\rangle}$, we can recover the inner product from the norm.

1. Suppose that V is a real inner product space. Show that

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}}{4} .
$$

2. Suppose that V is a complex inner product space. Show that

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}+\|u+i v\|^{2} i-\|u-i v\|^{2} i}{4} .
$$

2 For submission to Davis Lazowski

Problem 2.1. Suppose that $S: V \rightarrow V$ is a linear operator on an inner product space V. Define a new pairing by

$$
\langle u, v\rangle_{S}=\langle S u, S v\rangle
$$

1. Suppose that S is injective. Show that this new pairing is also an inner product on V.
2. Suppose that S fails to be injective. Show that this same pairing is not an inner product on V.

Problem 2.2. Suppose V is a finite-dimensional real vector space, and suppose $\langle-,-\rangle_{1}$ and $\langle-,-\rangle_{2}$ are two inner products on V.

1. Show that there exists a number $c>0$ with $\|v\|_{1} \leq c\|v\|_{2}$.
2. Suppose further that $\langle v, w\rangle_{1}=0$ if and only if $\langle v, w\rangle_{2}=0$. Show that there is a number $c>0$ such that $\langle-,-\rangle_{1}=c \cdot\langle-,-\rangle_{2}$.

3 For submission to Handong Park

Problem 3.1. What happens if Gram-Schmidt is applied to a list of vectors that is not linearly independent?
Problem 3.2. Suppose V is a finite-dimensional complex vector space, and suppose $f: V \rightarrow V$ is a linear function whose eigenvalues are all of absolute value less than 1 . For any $\varepsilon>0$, show there exists a positive integer m with $\left\|T^{m} v\right\|<\varepsilon\|v\|$ for every $v \in V$. (Hint: you could begin with an upper-triangular presentation of f.)

4 For submission to Rohil Prasad

Problem 4.1. 1. On $P_{2}(\mathbb{R})$, consider the inner product given by

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Apply the Gram-Schmidt procedure to the basis $\left(1, x, x^{2}\right)$ to produce an orthonormal basis of $P_{2}(\mathbb{R})$.
2. Find a polynomial $q \in P_{2}(\mathbb{R})$ such that for every $p \in P_{2}(\mathbb{R})$,

$$
p\left(\frac{1}{2}\right)=\langle p, q\rangle
$$

under the same inner product.
Problem 4.2. The Fibonacci sequence F_{1}, F_{2}, \ldots is defined by

$$
F_{1}=1, \quad F_{2}=1, \quad F_{n}=F_{n-2}+F_{n-1}
$$

We also define a linear function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y)=(y, x+y)$.

1. Show that $T^{n}(0,1)=\left(F_{n}, F_{n+1}\right) .{ }^{1}$
2. Find the eigenvalues of T.
3. Find a basis of \mathbb{R}^{2} consisting of eigenvectors of T.

[^0]4. Use the solution to the previous part to compute $T^{n}(0,1)$ in closed form.
5. Conclude more lazily that the $n^{\text {th }}$ Fibonacci number F_{n} is the nearest integer to
$$
\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

[^0]: ${ }^{1}$ This used to read $\left(F_{n}, F_{n-1}\right)$, which was a typo. Sorry!

