Homework \#7 Solutions

Thayer Anderson, Davis Lazowski, Handong Park, Rohil Prasad

1 For submission to Thayer Anderson

Problem 1.1. Suppose that $f, g: K^{3} \rightarrow K^{3}$ are two linear functions that each have eigenvalues 2,6 , and 7. Show that there exists a linear function $h: K^{3} \rightarrow K^{3}$ satisfying $f=h \circ g \circ h^{-1}$.

Solution. Because each has enough eigenvalues to exhaust the 3 -dimensional space K^{3}, f and g are both diagonalizable - i.e., there exist bases x_{1}, x_{2}, x_{3} and y_{1}, y_{2}, y_{3} such that f expressed in the first basis and g expressed in the second basis both give the same matrix presentation

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 7
\end{array}\right) .
$$

Write d for this diagonal matrix, b_{x} for the change-of-basis operator associated to the x-basis, and b_{y} for the change-of-basis operator associated to the y-basis. Algebraically, we thus have the two equations

$$
b_{x}^{-1} d b_{x}=f, \quad b_{y}^{-1} d b_{y}=g
$$

By sharing d across the two equations, we get

$$
\begin{equation*}
f=\left(b_{y}^{-1} b_{x}\right)^{-1} g\left(b_{y}^{-1} b_{x}\right) \tag{ECP}
\end{equation*}
$$

Problem 1.2. A norm on V is a function $\|-\|: V \rightarrow \mathbb{R}_{\geq 0}$ satisfying

- $\|u\|=0$ if and only if $u=0$.
- $\|k \cdot u\|=|k| \cdot\|u\|$ for any scalar k.
- $\|u+v\| \leq\|u\|+\|v\|$.

In this problem, we will show that when a norm arises from an inner product by $\|v\|=\sqrt{\langle v, v\rangle}$, we can recover the inner product from the norm.

1. Suppose that V is a real inner product space. Show that

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}}{4} .
$$

2. Suppose that V is a complex inner product space. Show that

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}+\|u+i v\|^{2} i-\|u-i v\|^{2} i}{4} .
$$

Solution. 1. This is a matter of expanding out the fractions.

$$
\begin{aligned}
\frac{\|u+v\|^{2}-\|u-v\|^{2}}{4} & =\frac{1}{4}(\langle u+v, u+v\rangle-\langle u-v, u-v\rangle) \\
& =\frac{1}{4}(\langle u, u\rangle+\langle v, v\rangle+2\langle u, v\rangle-\langle u, u\rangle-\langle v, v\rangle+2\langle u, v\rangle) \\
& =\langle u, v\rangle .
\end{aligned}
$$

2. This is also a matter of expanding out the fractions, but this time we have to be careful to track the conjugate-linearity of the right-hand argument of the inner product.

$$
-\quad / /-=\frac{1}{4}(\langle u+v, u+v\rangle-\langle u-v, u-v\rangle+\langle u+i v, u+i v\rangle i-\langle u-i v, u-i v\rangle i)
$$

Start by dealing just with the factors without any is:

$$
\begin{aligned}
= & \frac{1}{4}(\langle u, u\rangle+\langle v, v\rangle+\langle u, v\rangle+\overline{\langle u, v\rangle}-\langle u, u\rangle-\langle v, v\rangle+\langle u, v\rangle+\overline{\langle u, v\rangle} \\
& \quad+\langle u+i v, u+i v\rangle i-\langle u-i v, u-i v\rangle i) \\
= & \frac{1}{4}(4 \operatorname{Re}\langle u, v\rangle+\langle u+i v, u+i v\rangle i-\langle u-i v, u-i v\rangle i)
\end{aligned}
$$

Now look at the terms with i s:

$$
\begin{align*}
& =\frac{1}{4}(4 \operatorname{Re}\langle u, v\rangle+i\langle u, u\rangle+i\langle v, v\rangle+\langle u, v\rangle-\overline{\langle u, v\rangle}-(i\langle u, u\rangle+i\langle v, v\rangle-\langle u, v\rangle+\overline{\langle u, v\rangle})) \\
& =\frac{1}{4}(4 \operatorname{Re}\langle u, v\rangle+4 i \operatorname{Im}\langle u, v\rangle)=\langle u, v\rangle \tag{ECP}
\end{align*}
$$

2 For submission to Davis Lazowski

Problem 2.1. Suppose that $S: V \rightarrow V$ is a linear operator on an inner product space V. Define a new pairing by

$$
\langle u, v\rangle_{S}=\langle S u, S v\rangle
$$

1. Suppose that S is injective. Show that this new pairing is also an inner product on V.
2. Suppose that S fails to be injective. Show that this same pairing is not an inner product on V.

Solution. Part 1

- positive definite: $\langle u, u\rangle_{S} \geq 0$ because $\langle S u, S u\rangle \geq 0$ due to the definiteness of the original inner product.
- nondegenerate: If $\langle S u, S u\rangle=0$, then $S u=0$, by nondegeneracy of the original inner product. By injectivity of S, then $u=0$, as required.
- Linear in the first argument: $\langle S(u+\lambda w), S m\rangle=\langle S u+\lambda S w, S m\rangle$ by the linearity of S. By the linearity of the original inner product, therefore $\langle S u+\lambda S w, S m\rangle=\langle S u, S m\rangle+\lambda\langle S w, S m\rangle$ as required.
- Conjugacy: $\langle S u, S w\rangle=\overline{\langle S u, S w\rangle}$, because this is true for the original inner product.

Part 2
In this case, there exists $u \neq 0: S=0$. Then $\langle S u, S u\rangle=\langle 0,0\rangle=0$, so this pairing is degenerate. (DL)
Problem 2.2. Suppose V is a finite-dimensional real vector space, and suppose $\langle-,-\rangle_{1}$ and $\langle-,-\rangle_{2}$ are two inner products on V.

1. Show that there exists a number $c>0$ with $\|v\|_{1} \leq c\|v\|_{2}$.
2. Suppose further that $\langle v, w\rangle_{1}=0$ if and only if $\langle v, w\rangle_{2}=0$. Show that there is a number $c>0$ such that $\langle-,-\rangle_{1}=c \cdot\langle-,-\rangle_{2}$.

Solution. Part 1

If $\|v\|_{1}^{2} \leq c\|v\|_{2}^{2}$, then by positivity $\|v\|_{1} \leq \sqrt{c}\|v\|_{2}$. Therefore, we'll work with norms squared.
Let $v_{1} \ldots v_{n}$ an orthonormal basis of V with respect to $\left\rangle_{1}\right.$. Then

$$
\|v\|_{1}^{2}=\left\|\sum_{j=1}^{n} \alpha_{j} v_{j}\right\|_{1}^{2}=\left\langle\sum_{j=1}^{n} \alpha_{j} v_{j}, \sum_{j=1}^{n} \alpha_{j} v_{j}\right\rangle=\sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}
$$

Let $m=\max \left\{\left\|v_{1}\right\|_{2}^{2},\left\|v_{2}\right\|_{2}^{2} \ldots\left\|v_{n}\right\|_{2}^{2}\right\}$. Then

$$
\begin{aligned}
& \|v\|_{2}^{2}=\left\|\sum_{j=1}^{n} \alpha_{j} v_{j}\right\|_{2}^{2} \\
= & \left\langle\sum_{j=1}^{n} \alpha j v_{j}, \sum_{i=1}^{n} \alpha_{i} v_{j}\right\rangle \\
= & \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{j} \alpha_{i}^{*}\left\langle v_{j}, v_{i}\right\rangle_{2}
\end{aligned}
$$

By Cauchy-Schwarz, $\left\langle v_{j}, v_{i}\right\rangle \leq\left\|v_{j}\right\|\left\|v_{i}\right\| \leq \max \left\{\left\|v_{j}\right\|_{2}^{2},\left\|v_{i}\right\|_{2}^{2}\right\} \leq m$. Furthermore, $\left|\alpha_{j} \alpha_{i}^{*}\right| \leq \max \left\{\left|\alpha_{j}\right|^{2},\left|\alpha_{i}\right|^{2}\right\} \leq$ $\left|\alpha_{j}\right|^{2}+\left|\alpha_{i}\right|^{2}$.

Therefore

$$
\begin{array}{r}
\sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{j} \alpha_{i}^{*}\left\langle v_{j}, v_{i}\right\rangle_{2} \\
\leq \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_{j} \alpha_{i}^{*} m \\
\leq m \sum_{j=1}^{n} \sum_{i=1}^{n}\left|\alpha_{j}\right|^{2}+\left|\alpha_{i}\right|^{2} \\
\leq m\left[\|v\|_{1}^{2}+\|v\|_{1}^{2}\right] \\
\Longrightarrow\|v\|_{2}^{2} \leq 2 m\|v\|_{1}^{2}
\end{array}
$$

As required.
Part 2
In this case, an orthonormal basis $e_{1} \ldots e_{n}$ of \langle,\rangle_{1} is also an orthogonal basis of \langle,\rangle_{2}, because $\left\langle e_{i}, e_{j}\right\rangle_{1}=$ $0 \Longrightarrow\left\langle e_{i}, e_{j}\right\rangle_{2}=-$. It's enough to show that $\left\langle e_{j}, e_{j}\right\rangle_{2}=c$ for every j, because then we can expand any vector in terms of this orthonormal basis to achieve the desired result.

Suppose that $\left\langle e_{i}, e_{i}\right\rangle_{2}=c_{1}$ and $\left\langle e_{j}, e_{j}\right\rangle_{2}=c_{2}$. Then

$$
\begin{array}{r}
\left\langle e_{i}-\sqrt{\frac{c_{1}}{c_{2}}} e_{j}, e_{i}+\sqrt{\frac{c_{1}}{c_{2}}} e_{j}\right\rangle \\
=\left\langle e_{i}, e_{i}\right\rangle_{2}-\frac{c_{1}}{c_{2}}\left\langle e_{j}, e_{j}\right\rangle_{2} \\
=c_{1}-c_{1}=0
\end{array}
$$

Therefore, by our assumptions,

$$
\left\langle e_{i}-\sqrt{\frac{c_{1}}{c_{2}}} e_{j}, e_{i}+\sqrt{\frac{c_{1}}{c_{2}}} e_{j}\right\rangle_{1}=0
$$

Expanding this out, we recover

$$
\begin{equation*}
\left\langle e_{i}, e_{i}\right\rangle-\frac{c_{1}}{c_{2}}\left\langle e_{j}, e_{j}\right\rangle=1-\frac{c_{1}}{c_{2}} \tag{DL}
\end{equation*}
$$

Therefore, for this to be zero, we must have $c_{1}=c_{2}$. Therefore done.
Solution. Here's a slightly shorter version of Part 1 (that is very much the same in spirit). For a basis e_{1}, \ldots, e_{n} which is orthonormal for the second inner product, we have

$$
\|v\|_{2}=\left\|a_{1} e_{1}+\cdots+a_{n} e_{n}\right\|_{2}=\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}}
$$

For the first inner product, we consider the same sum:

$$
\|v\|_{1}=\left\|a_{1} e_{1}+\cdots+a_{n} e_{n}\right\|_{1} .
$$

However, this decomposition is not necessarily orthonormal for the first inner product, so we have to use the triangle inequality.

$$
\begin{aligned}
& \leq\left\|a_{1} e_{1}\right\|_{1}+\cdots+\left\|a_{n} e_{n}\right\|_{1} \\
& =\left|a_{1}\right|\left\|e_{1}\right\|_{1}+\cdots+\left|a_{n}\right|\left\|e_{n}\right\|_{1} .
\end{aligned}
$$

Taking $m=\max \left\{\left\|e_{1}\right\|_{1}, \ldots,\left\|e_{n}\right\|_{1}\right\}$, we get a bound

$$
\begin{aligned}
& \leq\left|a_{1}\right| m+\cdots+\left|a_{n}\right| m \\
& =\left(\left|a_{1}\right|+\cdots+\left|a_{n}\right|\right) m
\end{aligned}
$$

Finally, each of the terms $\left|a_{j}\right|$ is individually bounded above by our explicit formula for $\|v\|_{2}$, hence we have yet another bound

$$
\begin{align*}
& \leq\left(\|v\|_{2}+\cdots+\|v\|_{2}\right) m \\
& =\|v\|_{2} \cdot n \cdot m \tag{ECP}
\end{align*}
$$

3 For submission to Handong Park

Problem 3.1. What happens if Gram-Schmidt is applied to a list of vectors that is not linearly independent?
Solution. It breaks: for a list of vectors v_{1}, \ldots, v_{n} with intermediate subspaces

$$
U_{j}=\operatorname{span}\left\{v_{1}, \ldots, v_{j}\right\}
$$

Gram-Schmidt operates by forming the vectors $w_{j}=v_{j}-P_{U_{j-1}} v_{j}$ and normalizing them. If $v_{j} \in U_{j-1}$ witnesses a linear combination of the preceding vectors, then the resulting vector w_{j} is zero - but the zero vector cannot be normalized.

Problem 3.2. Suppose V is a finite-dimensional complex vector space, and suppose $f: V \rightarrow V$ is a linear function whose eigenvalues are all of absolute value less than 1 . For any $\varepsilon>0$, show there exists a positive integer m with $\left\|T^{m} v\right\|<\varepsilon\|v\|$ for every $v \in V$. (Hint: you could begin with an upper-triangular presentation of f.)

Solution. We will, in fact, begin with an orthonormal upper-triangular presentation M of f. In class, we gave a formula for the entries of a product matrix:

$$
(A B)_{i k}=\sum_{j=1}^{n} A_{i j} \cdot B_{j k}
$$

This generalizes to powers as follows:

$$
\left(M^{m}\right)_{i k}=\sum_{j_{1}, \ldots, j_{n-1}} M_{i j_{1}} M_{j_{1} j_{2}} \cdots M_{j_{m-2} j_{m-1}} M_{j_{m-1} k}
$$

The upper-triangular property of M means that $M_{y x}=0$ whenever $y>x$. This makes our sum much smaller:

$$
\left(M^{m}\right)_{i k}=\sum_{j_{1} \leq \cdots \leq j_{m-1}} M_{i j_{1}} M_{j_{1} j_{2}} \cdots M_{j_{m-2} j_{m-1}} M_{j_{m-1} k}
$$

where the sum is now taken over weakly increasing sequences of integers between i and k. The main observation is that for $m \gg 0$, these sequence must mostly consist of repeated elements: at most $k-i$ different elements can appear, so at least $m-(k-i)$ entries of the form $A_{j j}$ - i.e., diagonal entries must appear. Since the diagonal entries all satisfy $\left|A_{j j}\right|<1$, we have $\lim _{m \rightarrow \infty}\left|A_{j j}\right|^{m}=0$ for any j. Taking m large enough so that $\left|A_{j j}\right|^{m}<\varepsilon /\left(n \cdot \prod_{i<k} A_{i k}\right)$ for any choice of j ensures that the entries of the linear combination coefficients expressing any vector $v \in V$ get scaled down by at least ε.
(ECP)

4 For submission to Rohil Prasad

Problem 4.1. 1. On $P_{2}(\mathbb{R})$, consider the inner product given by

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Apply the Gram-Schmidt procedure to the basis $\left(1, x, x^{2}\right)$ to produce an orthonormal basis of $P_{2}(\mathbb{R})$.
2. Find a polynomial $q \in P_{2}(\mathbb{R})$ such that for every $p \in P_{2}(\mathbb{R})$,

$$
p\left(\frac{1}{2}\right)=\langle p, q\rangle
$$

under the same inner product.
Solution. 1. This problem is largely computational.
1: We need only check that 1 is a normal vector:

$$
\sqrt{\int_{0}^{1} 1 \cdot 1 d x}=\sqrt{1}=1
$$

x : First, we remove the projection of x onto the subspace spanned by 1 :

$$
x-1 \cdot \int_{0}^{1} x \cdot 1 d x=x-\frac{1}{2} .
$$

Then, we calculate the norm

$$
\left\|x-\frac{1}{2}\right\|=\sqrt{\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x}=\sqrt{\left.\frac{1}{3}\left(x-\frac{1}{2}\right)^{3}\right|_{x=0} ^{1}}=\frac{1}{2 \sqrt{3}}
$$

so that we can normalize the result:

$$
\frac{x-1 / 2}{1 / 2 \sqrt{3}}=2 \sqrt{3} x-\sqrt{3}
$$

x^{2} : Again, remove the projection of x^{2} onto the subspace spanned by 1 and x :

$$
x^{2}-1 \cdot \int_{0}^{1} x^{2} \cdot 1 d x-(2 \sqrt{3} x-\sqrt{3}) \cdot \int_{0}^{1} x^{2} \cdot(2 \sqrt{3} x-\sqrt{3}) d x=x^{2}-x+\frac{1}{6} .
$$

Then, we calculate the norm

$$
\left\|x^{2}-x+\frac{1}{6}\right\|=\sqrt{\int_{0}^{1}\left(x^{4}-2 x^{3}+\frac{4}{3} x^{2}-\frac{1}{3} x+\frac{1}{36}\right) d x}=\frac{1}{6 \sqrt{5}}
$$

so that we can normalize the result:

$$
\frac{x^{2}-x+\frac{1}{6}}{\frac{1}{6 \sqrt{5}}}=6 \sqrt{5} x^{2}-6 \sqrt{5} x+\sqrt{5}
$$

2. Write $\varphi(p)$ for the functional $\varphi(p)=p(1 / 2)$. Our by-hand proof of Riesz's theorem gives an explicit formula for the polynomial q satisfying $\langle p, q\rangle=\varphi(p)$:

$$
q=\overline{\varphi\left(e_{1}\right)} e_{1}+\overline{\varphi\left(e_{2}\right)} e_{2}+\overline{\varphi\left(e_{3}\right)} e_{3}
$$

for any orthonormal basis $\left(e_{1}, e_{2}, e_{3}\right)$ of our space of polynomials. In the previous part, we calculated such a basis. Hence:

$$
\begin{align*}
q & =\varphi(1) \cdot 1+\varphi(2 \sqrt{3} x-\sqrt{3}) \cdot(2 \sqrt{3} x-\sqrt{3})+\varphi\left(6 \sqrt{5} x^{2}-6 \sqrt{5} x+\sqrt{5}\right) \cdot\left(6 \sqrt{5} x^{2}-6 \sqrt{5} x+\sqrt{5}\right) \\
& =1 \cdot 1+0 \cdot(2 \sqrt{3} x-\sqrt{3})+\frac{-\sqrt{5}}{2} \cdot\left(6 \sqrt{5} x^{2}-6 \sqrt{5} x+\sqrt{5}\right) \\
& =-15 x^{2}+15 x-\frac{3}{2} \tag{ECP}
\end{align*}
$$

Problem 4.2. The Fibonacci sequence F_{1}, F_{2}, \ldots is defined by

$$
F_{1}=1, \quad F_{2}=1, \quad F_{n}=F_{n-2}+F_{n-1}
$$

We also define a linear function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y)=(y, x+y)$.

1. Show that $T^{n}(0,1)=\left(F_{n}, F_{n+1}\right) .{ }^{1}$
2. Find the eigenvalues of T.
3. Find a basis of \mathbb{R}^{2} consisting of eigenvectors of T.
4. Use the solution to the previous part to compute $T^{n}(0,1)$ in closed form.
5. Conclude more lazily that the $n^{\text {th }}$ Fibonacci number F_{n} is the nearest integer to

$$
\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

[^0]Solution. 1. We give an inductive proof. The claim holds for $n=1$:

$$
T^{1}(0,1)=(1,0+1)=(1,1)=\left(F_{1}, F_{2}\right)
$$

The inductive step follows from

$$
T^{n+1}(0,1)=T T^{n}(0,1)=T\left(F_{n}, F_{n+1}\right)=\left(F_{n+1}, F_{n}+F_{n+1}\right)=\left(F_{n+1}, F_{n+2}\right)
$$

2. The eigenvalue equation for T is

$$
\binom{y}{x+y}=T\binom{x}{y}=\lambda\binom{x}{y}=\binom{\lambda x}{\lambda y} .
$$

Since $\lambda=0$ cannot satisfy this relation, we are free to divide by λ and combine the two equations to get $0=\lambda^{2}-\lambda-1$, or

$$
\lambda=\frac{1 \pm \sqrt{5}}{2}
$$

3. Write λ_{+}and λ_{-}for the positive and negative eigenvalues respectively. By picking $x=1$ and using the first row of the eigenvector equation, an eigenvector for λ_{+}is $\binom{1}{\lambda_{+}}$and an eigenvector for λ_{-} is $\binom{1}{\lambda_{-}}$. These are linearly independent and of the right length, hence they form a basis.
4. We seek a_{+}and a_{-}solving

$$
\binom{0}{1}=a_{+}\binom{1}{\lambda_{+}}+a_{-}\binom{1}{\lambda_{-}} .
$$

The first row forces $a_{+}=-a_{-}$, and the second row gives $1=a_{+} \sqrt{5}$. Hence, we have

$$
\binom{0}{1}=\frac{1}{\sqrt{5}}\binom{1}{\lambda_{+}}+\frac{-1}{\sqrt{5}}\binom{1}{\lambda_{-}} .
$$

Applying T^{n} to this equation gives

$$
T^{n}\binom{0}{1}=\frac{\lambda_{+}^{n}}{\sqrt{5}}\binom{1}{\lambda_{+}}+\frac{-\lambda_{-}^{n}}{\sqrt{5}}\binom{1}{\lambda_{-}} .
$$

The first entry reads $F_{n}=\frac{1}{\sqrt{5}}\left(\lambda_{+}^{n}-\lambda_{-}^{n}\right)$.
5. We know that F_{n} always gives an integer value, but both λ_{+}^{n} and λ_{-}^{n} are always irrational values. The observation here is that because $\left|\lambda_{-}\right|<1, \frac{1}{\sqrt{5}} \lambda_{-}^{n}<\frac{1}{2}$, so that this term never disturbs the sum by very much. In particular, F_{n} is always the nearest integer to the first term alone:

$$
\begin{equation*}
F_{n} \approx \frac{\lambda_{+}^{n}}{\sqrt{5}} \tag{ECP}
\end{equation*}
$$

[^0]: ${ }^{1}$ This used to read $\left(F_{n}, F_{n-1}\right)$, which was a typo. Sorry!

