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Problem 1.1. Let V be a finite-dimensional real vector space, f: V — V a linear map, and A € R some
real number. Show that there exists a second real number a € R with |A — a| < 1555 such that f — o is
invertible.

Solution. The linear map f — « will be invertible if it has no eigenvalues of 0. This follows because if there
are no zero eigenvalues then the kernel is trivial and thus f must be an isomorphism as it is between two
equal dimensional vector spaces. Suppose that A is an eigenvalue of f —«. I claim that A+ « is an eigenvalue
of f. This follows from the definitions. Suppose that v is an eigenvector of f — a with eigenvalue A, then:

(f = a)(v) = Ao
= fv)= (A +a)
If « is not an eigenvalue of f, then 0 is not an eigenvalue of f — . The map f has finitely many

eigenvalues and for each eigenvalue of f, k, there are infinitely many numbers « satisfying |a — k| < ﬁ

thus there exists an a with the desired property. (TA)

Problem 1.2. Let A be an (n x n)-matrix presenting a linear function R” — R"™.

1. Suppose that the sum of the entries in each row of A equals 1. Show that 1 is an eigenvalue of A.

2. Suppose that the sum of the entries in each column of A equals 1. Show that 1 is an eigenvalue of A.

Solution. 1. The matrix A can be represented as:
ail a1 ... QA1n
a1 a922 ... Qop
an1 Ap2 ... Qapn

with the following relations on the entries:

air taz+ - +ay, =1
a1 +ag + -+ +agm =1

an1+an2+"‘+ann:1

Let us consider the action of A on an arbitrary vector v = (z1,...,2,) such that Av =v. Applying A
to v we obtain the following expression:
im0
Av = :
D it Ani®;



We see that if ; = 1 for all 1 <4 < n then

D i 1
AU = : = .

D ie1 Oni 1
And v =(1,...,1) so v is an eigenvector of eigenvalue 1. This completes the proof.

2. Given the matrix A with the sum across the columns equal to 1 and encoding a map f, we take the
dual map f* which is encoded by the matrix A”. We note that the sum of the entries in each row of
AT is equal to 1. It follows that f* has an eigenvalue of 1. This means that f* — 1 is not invertible.
Applying Axler’s theorem about the row rank and the column rank, we see that (f* —1)* = f — 1 is
not invertible if and only if f* — 1 is not invertible. Therefore 1 is an eigenvalue of f.

[ (v)] (v) = v™(v)
= 0" f(v) =v"(v
v (f(v)) =1

It follows that f(v) = v. Thus f has an eigenvalue of 1.
(TA)

Problem 1.3. Let V be finite dimensional and let f: V — V a linear function. Suppose that v € V is
a non-zero vector, and suppose that p is a nonzero polynomial with p(f)(v) = 0, and suppose that there
are no polynomials of degree less than that of p which have this property. Show that every zero of p is an
eigenvalue of f.

Solution. Suppose that k is a zero of p. Then using our machinery from class, we can factor p as follows:

p(x) = (z — k)q(x)

where ¢ is a polynomial of degree degp — 1. Then consider p(f)(v):

p(f)(w) = (f = k)a(f)(v) =0

Since ¢ has degree less than that of p, it follows that ¢(f)(v) := w # 0. Then w is a vector such that
(f — k)(w) = 0, then w is an eigenvector of f with eigenvalue k and the proof is complete. (TA)
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Problem 2.1. Suppose f: V — V is invertible. Show that ) is an eigenvalue of f if and only if A=! is an
eigenvalue of f~!, and show that v is an eigenvector of f if and only if it is also an eigenvector of f~1.

Solution. Suppose fv = \v.

Then v = f~1(fv) = f~1(\v) = Af~(v), so that by diving by A then A~tv = f~1v.

This proves one direction, for both statements. But our choice of f was totally arbitrary, and we could
do the same things for f~!, so by symmetry done. (DL)

Problem 2.2. Suppose f: V — V is a linear transformation with dimim f = k. Show that f has at most
(k + 1) distinct eigenvalues.

Solution. If fv = Av, and fw = Nw, with A # )\, then v and w are linearly independent. There are at
most dimimf = k linearly independent vectors in the image, plus 0. So there are at most k£ + 1 distinct
eigenvalues. (DL)



Problem 2.3. Suppose V is a complexr vector space, f: V — V a linear function, and p a complex
polynomial. Show that o € C is an eigenvalue of p(f) if and only if o = p(\) for some eigenvalue A of f.
Then, show that this result fails if V' is merely assumed to be a real vector space and p a real polynomial.

Solution. Suppose Av = fv.
Then

p(f)v = ijv = Z)\jv =p(A)v=aw
j=1 j=1

Finishing the first direction.

In the other direction, suppose p(f)v = av. In particular, p — « is a polynomial, and [p — «](f)v = 0.

By problem 1.3, if p — « is the lowest degree polynomial such that [p — «|(f)v = 0, then we’re done,
because every zero of [p — o] is an eigenvalue of f, and if p(A) — @ = 0, then p(A\) = a.

Otherwise, suppose there exists g(f)v = 0,degg < deg[p — ], so that degg is minimal. Then by the
division algorithm [p — o] = hg + r, with degr < degg. But

r(f)v=Ip—al(f)v —hg(f)v=0

So by our assumption of minimality, » = 0. Therefore, [p — a] = hg.

Therefore, all the zeroes of g are also zeroes of [p — a], therefore done.

An example of how this fails for the reals.

Let f:V =V, f(w) =w —wv, for some v € V.

Then let p = 2. p(f)(v) = —v, so that —1 is an eigenvalue of p(f). But there is no A such that A\ = —1
over the reals.

Precisely, this problem fails over the reals because some polynomials might not have zeroes over the reals,
for example 2 + 1.

Side note about extending problem 1.3 to infinite dimensions.

Problem 1.3 assumes finite dimensionality but can easily be extended to the infinite dimensional case. Let
(v) denote the subspace of V generated by v. Then let n = degp. The space V = (v) + (f(v)) +- -+ (f*(v))
is finite dimensional.

Apply problem 1.3 to f(v) : V. — V, with f(v) = f(v). Then because p(f)(v) = p(f)(v), and fw =
Aw <= fw = Aw, this proves the infinite dimensional case. (DL)
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Problem 3.1. Let p: V — V satisfy pop = p. Show that V = kerp @ imp.

Solution. First, we express an arbitrary v € V as v = pv + (v — pv), which is the sum of a vector pv € imp
and (v — pv) € ker p, since

p(v —pv) =pv —ppv = pv —pv = 0.
This shows V = kerp + imp. To show that the sum is direct, we show that kerp Nimp = 0. So, suppose

v € ker p Nim p satisfies pv = 0 and also pw = v for some w € V. Then ppw = pw gives pv = v and hence
we have calculated v = 0. (ECP)

Problem 3.2. Suppose that f: V — V is a linear operator with f o f = id, and suppose that —1 is not an
eigenvalue of f. Show that f =id.

Solution. If f o f =id, then fo f —id = 0 factors as (f —id)(f + id) = 0. Since —1 is not an eigenvalue of
f, the operator f + id is invertible, hence we get f —id = (f —id)(f +id)(f +id)"t =0(f +id)~! = 0. It
follows that f = id. (ECP)

Problem 3.3. 1. Suppose that a subspace U < V is invariant under a linear function f: V — V. Show
that U is also invariant under p(f), where p is any polynomial.



2. Now suppose V is a complex vector space with dimension 1 < dim V' < co. Show that for any particular
linear map f: V — V| there is a proper subspace

{p(f) | p a polynomial} < L(V, V).

Solution. 1. We need only show that for u € U, we have p(f)(u) € U. This follows by direct calculation,
beginning with setting p(z) = ap + a1z + - - - + a,2™. Then, we have

p(f)(u) =ao-u+arf(u) + -+ anf""(u).

Each of the terms on the right is a member of U, since U is invariant and closed under scalar multipli-
cation, and hence the whole sum is in U since U is closed under sums.

2. The map f is guaranteed to have an eigenvector vy, hence an invariant subspace U of dimension 1.
By the first part, every operator expressable as p(f) also has U as an invariant subspace. To show
properness, we thus only need to exhibit an operator g: V' — V which does not have U invariant.
Extending the eigenvector v of f to a basis (vi,ve,...,v,) of V| we take g to be the operator that
swaps v1 and va and leaves the other basis elements undisturbed. (ECP)

4 For submission to Rohil Prasad

Problem 4.1. Let f : V — V be a linear operator. Prove that f/kerf is injective if and only if
(kerf) N (imf) = 0.

Solution. Note that by definition, (f/kerf)(v + kerf) = f(v) + kerf.

Furthermore, injectivity of f/kerf is equivalent to showing that ker(f/kerf) = 0.

First, assume (kerf) N (imf) = 0. This implies that for any v € V, f(v) € kerf. For any v + U,
we have (f/kerf)(v + kerf) = f(v) + kerf. Since f(v) ¢ kerf, this affine set is nonzero in V/kerf, so
v+ U ¢& ker(f/kerf). Since this is true for any v 4+ U, we find that the kernel of this map is 0.

For the other direction, we prove the contrapositive statement. If v € (kerf) N (imf) then let v’ be such
that f(v') = v. It follows that (f/kerf)(v' + kerf) = v + kerf. Since v € kerf, this is the zero element of
V/kerf, so v’ +kerf € ker(f/kerf). (RP)

Problem 4.2. Suppose that A;,...,\, is a list of distinct real numbers. Show that e*®, ... e*?® is a list
of linearly independent functions R — R. (Hint: find a linear operator on the space of functions R — R for
which these are eigenvectors of distinct eigenvalues.)

Solution. Let D be the subspace of everywhere-differentiable functions R — R. Note that e*i* € D for every
i, and furthermore if the e are linearly independent as elements of D, they are linearly independent as
elements of the whole space.

Now consider the differentiation operator % : D — D. By definition, this operator is linear. Furthermore,
d%(@””) = \;eM®. Since the \; are distinct, the e** are eigenvectors of % with distinct eigenvalues.

We complete the proof by inducting on n. For n = 1, it is clear that the set {e*1*} is linearly independent.

Now assume that the statement holds for n — 1. For the sake of contradiction, assume that the e™?® are
linearly dependent. Therefore, there exists constants ¢; not all zero such that >, c;ieM® = 0.

Assume without loss of generality that ¢; # 0 and set c; = —c;j/c1. Then by moving terms around and
dividing by ¢;, we have eM? = > o cei®.
Multiplying by A1, we find A;e*® = P Alc;-eAfw.
If we instead apply % to the expression, we find \je*® = E;'lzz )\jc’je)‘ﬂ”.
Subtracting these two identities, we get 2?22()\j — Al)c;.ek-f * = 0. However, by our inductive hypothesis

the set of functions {e*2%,... e*?} is linearly independent. Since Aj # A for any j # 1, this implies that



¢ is equal to 0 for every j. This in turn implies ¢; = 0 for every j > 1, so from our original identity we

J
have that c;e*® = 0. This is clearly false, so we arrive at a contradiction and {e**, ... e**} is linearly

independent. (RP)

Problem 4.3. Let V be an arbitrary vector space and let f : V' — V be a linear function. Consider the
following three situations:

1. Every nonzero vector is an eigenvector of f.

2. The vector space V is finite dimensional of dimension n, and every subspace U < V with dimU =n—1
is invariant under f.

3. The vector space V is finite dimensional of dimension n > 3, and every subspace U < V with dimU = 2
is invariant under f.

In each case, show that f is a scalar multiple of the identity operator.

Solution. 1. Note that if V is one-dimensional, then we are done since every vector is a scalar multiple of
another, so they will all have the same eigenvalues.

Now assuming V has dimension > 2, we can pick vy, vo such that v is not a scalar multiple of v;. For
the sake of contradiction, assume f(v1) = Ajv; and f(v2) = Agve with Ay # Ao, Let A be the eigenvalue of
v1 + va. Now we have that f(v1 + v2) = A(v1 + v2).

By linearity, the left-hand side evaluates to A\jv; + Aqva. Rearranging, we find that

(/\1 — )\)Ul = (/\ — /\2)1)2

Therefore, vs is a scalar multiple of v; and so we arrive at a contradiction.

2. Let {v1,va,...,v,} be a basis of V. For 1 <1i < n, let U; be the span of all the basis vectors except
for v;.

By our assumption, each of the U; are invariant under f. Therefore, we have an induced linear map
fi + VJU; — V/U; defined by fi(v+ U;) = f(v) + U; for every i. However, by definition V/U; is one-
dimensional, so f; is multiplication by some scalar \;.

Therefore, it follows that f;(v; +U;) = A\jv; + U, so for every i we have f(v;) = A\jv; +u; for some u; € Us.

Observe that v; € U; for every j # i. Therefore, by invariance we must have f(v;) € U; for every j # i.
In order for f(v;) to be in Uj;, we require its coefficient in the basis {v1,...,v,} at v; to be 0. Therefore, if
we write out u; = Zj# ¢jvj, we must have ¢; = 0. Taking this over every j # ¢, it follows that u; = 0.

Now it remains to show that all the \; are equal. We will show A\; = Ay and the proof is analogous for

all others. Then observe that the span of {v; + va,v3,...,v,} is a subspace W of dimension n — 1 and is
therefore invariant under f. Therefore, f(vi + vo) = Ajv1 + Agva € W.
Therefore, there exist constants c, 3, ¢4, - . ., ¢, such that A\jvy + Aove = c(vy +v2) + 2123 c;v;. It follows

that (¢ — Ap)vi + (¢ — A2)va + >~ 5 ¢iv; = 0. By linear independence of the v;, all of these coefficients are 0
and so A\; = ¢ = Aq.

3. Here we use the fact that an intersection of invariant subspaces is itself an invariant subspace.

Pick a basis {v1,va,...,v,} of V. Let U; be the span of v;,v;11 for 1 <4 <n—1 and let U,, be the span
of Un, V1.

By our assumption, each of the U; are invariant. Furthermore, U; N U;_; is the span of v; for ¢ > 1,
and U; N U, is the span of v;. These subspaces are also all invariant under f and one-dimensional, so the
restriction of f to the span of v; is multiplication by \;.

By a similar argument to Part 2, we show A; = As and claim that the other equalities are analogous.

Note that the span of vy + ve,v3 is an invariant subspace W of dimension 2. Therefore, we have f(v; +
vy + v3) € W, so there exist constants ¢,d such that f(v; + vo + v3) = cvy + cve 4+ dvs. By definition,
flor + va + v3) = Atv1 + Agvo + Agvs. By linear independence of vy, vq,vs it follows that d = A3, and
A1 = ¢ = Ay as desired. (RP)



