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1 For submission to Thayer Anderson

Problem 1.1. Let V be a finite-dimensional real vector space, f : V → V a linear map, and λ ∈ R some
real number. Show that there exists a second real number α ∈ R with |λ − α| < 1

1000 such that f − α is
invertible.

Solution. The linear map f − α will be invertible if it has no eigenvalues of 0. This follows because if there
are no zero eigenvalues then the kernel is trivial and thus f must be an isomorphism as it is between two
equal dimensional vector spaces. Suppose that λ is an eigenvalue of f−α. I claim that λ+α is an eigenvalue
of f . This follows from the definitions. Suppose that v is an eigenvector of f − α with eigenvalue λ, then:

(f − α)(v) = λv

⇒ f(v) = (λ+ α)v

If α is not an eigenvalue of f , then 0 is not an eigenvalue of f − α. The map f has finitely many
eigenvalues and for each eigenvalue of f , k, there are infinitely many numbers α satisfying |α − k| < 1

1000
thus there exists an α with the desired property. (TA)

Problem 1.2. Let A be an (n× n)-matrix presenting a linear function Rn → Rn.

1. Suppose that the sum of the entries in each row of A equals 1. Show that 1 is an eigenvalue of A.

2. Suppose that the sum of the entries in each column of A equals 1. Show that 1 is an eigenvalue of A.

Solution. 1. The matrix A can be represented as:
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


with the following relations on the entries:

a11 + a12 + · · ·+ a1n = 1

a21 + a22 + · · ·+ a2n = 1

...

an1 + an2 + · · ·+ ann = 1

Let us consider the action of A on an arbitrary vector v = (x1, . . . , xn) such that Av = v. Applying A
to v we obtain the following expression:

Av =


∑n
i=1 a1ixi

...∑n
i=1 anixi
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We see that if xi = 1 for all 1 ≤ i ≤ n then

Av =


∑n
i=1 a1i

...∑n
i=1 ani

 =

 1
...
1


And v = (1, . . . , 1) so v is an eigenvector of eigenvalue 1. This completes the proof.

2. Given the matrix A with the sum across the columns equal to 1 and encoding a map f , we take the
dual map f∗ which is encoded by the matrix AT . We note that the sum of the entries in each row of
AT is equal to 1. It follows that f∗ has an eigenvalue of 1. This means that f∗ − 1 is not invertible.
Applying Axler’s theorem about the row rank and the column rank, we see that (f∗ − 1)∗ = f − 1 is
not invertible if and only if f∗ − 1 is not invertible. Therefore 1 is an eigenvalue of f .

[f∗(v∗)] (v) = v∗(v)

⇒ v∗f(v) = v∗(v

v∗(f(v)) = 1

It follows that f(v) = v. Thus f has an eigenvalue of 1.
(TA)

Problem 1.3. Let V be finite dimensional and let f : V → V a linear function. Suppose that v ∈ V is
a non-zero vector, and suppose that p is a nonzero polynomial with p(f)(v) = 0, and suppose that there
are no polynomials of degree less than that of p which have this property. Show that every zero of p is an
eigenvalue of f .

Solution. Suppose that k is a zero of p. Then using our machinery from class, we can factor p as follows:

p(x) = (x− k)q(x)

where q is a polynomial of degree deg p− 1. Then consider p(f)(v):

p(f)(v) = (f − k)q(f)(v) = 0

Since q has degree less than that of p, it follows that q(f)(v) := w 6= 0. Then w is a vector such that
(f − k)(w) = 0, then w is an eigenvector of f with eigenvalue k and the proof is complete. (TA)

2 For submission to Davis Lazowski

Problem 2.1. Suppose f : V → V is invertible. Show that λ is an eigenvalue of f if and only if λ−1 is an
eigenvalue of f−1, and show that v is an eigenvector of f if and only if it is also an eigenvector of f−1.

Solution. Suppose fv = λv.
Then v = f−1(fv) = f−1(λv) = λf−1(v), so that by diving by λ then λ−1v = f−1v.
This proves one direction, for both statements. But our choice of f was totally arbitrary, and we could

do the same things for f−1, so by symmetry done. (DL)

Problem 2.2. Suppose f : V → V is a linear transformation with dim im f = k. Show that f has at most
(k + 1) distinct eigenvalues.

Solution. If fv = λv, and fw = λ′w, with λ 6= λ′, then v and w are linearly independent. There are at
most dim im f = k linearly independent vectors in the image, plus 0. So there are at most k + 1 distinct
eigenvalues. (DL)
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Problem 2.3. Suppose V is a complex vector space, f : V → V a linear function, and p a complex
polynomial. Show that α ∈ C is an eigenvalue of p(f) if and only if α = p(λ) for some eigenvalue λ of f .
Then, show that this result fails if V is merely assumed to be a real vector space and p a real polynomial.

Solution. Suppose λv = fv.
Then

p(f)v =

n∑
j=1

f jv =

n∑
j=1

λjv = p(λ)v = αv

Finishing the first direction.
In the other direction, suppose p(f)v = αv. In particular, p− α is a polynomial, and [p− α](f)v = 0.
By problem 1.3, if p − α is the lowest degree polynomial such that [p − α](f)v = 0, then we’re done,

because every zero of [p− α] is an eigenvalue of f , and if p(λ)− α = 0, then p(λ) = α.
Otherwise, suppose there exists g(f)v = 0,deg g < deg[p − α], so that deg g is minimal. Then by the

division algorithm [p− α] = hg + r, with deg r < deg g. But

r(f)v = [p− α](f)v − hg(f)v = 0

So by our assumption of minimality, r = 0. Therefore, [p− α] = hg.
Therefore, all the zeroes of g are also zeroes of [p− α], therefore done.
An example of how this fails for the reals.
Let f : V → V, f(w) = w − v, for some v ∈ V .
Then let p = x2. p(f)(v) = −v, so that −1 is an eigenvalue of p(f). But there is no λ such that λ2 = −1

over the reals.
Precisely, this problem fails over the reals because some polynomials might not have zeroes over the reals,

for example x2 + 1.
Side note about extending problem 1.3 to infinite dimensions.
Problem 1.3 assumes finite dimensionality but can easily be extended to the infinite dimensional case. Let

〈v〉 denote the subspace of V generated by v. Then let n = deg p. The space Ṽ = 〈v〉+ 〈f(v)〉+ · · ·+ 〈fn(v)〉
is finite dimensional.

Apply problem 1.3 to f̃(v) : Ṽ → Ṽ , with f̃(v) = f(v). Then because p(f̃)(v) = p(f)(v), and f̃w =
λw ⇐⇒ fw = λw, this proves the infinite dimensional case. (DL)

3 For submission to Handong Park

Problem 3.1. Let p : V → V satisfy p ◦ p = p. Show that V = ker p⊕ im p.

Solution. First, we express an arbitrary v ∈ V as v = pv + (v − pv), which is the sum of a vector pv ∈ im p
and (v − pv) ∈ ker p, since

p(v − pv) = pv − ppv = pv − pv = 0.

This shows V = ker p + im p. To show that the sum is direct, we show that ker p ∩ im p = 0. So, suppose
v ∈ ker p ∩ im p satisfies pv = 0 and also pw = v for some w ∈ V . Then ppw = pw gives pv = v and hence
we have calculated v = 0. (ECP)

Problem 3.2. Suppose that f : V → V is a linear operator with f ◦ f = id, and suppose that −1 is not an
eigenvalue of f . Show that f = id.

Solution. If f ◦ f = id, then f ◦ f − id = 0 factors as (f − id)(f + id) = 0. Since −1 is not an eigenvalue of
f , the operator f + id is invertible, hence we get f − id = (f − id)(f + id)(f + id)−1 = 0(f + id)−1 = 0. It
follows that f = id. (ECP)

Problem 3.3. 1. Suppose that a subspace U ≤ V is invariant under a linear function f : V → V . Show
that U is also invariant under p(f), where p is any polynomial.
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2. Now suppose V is a complex vector space with dimension 1 < dimV <∞. Show that for any particular
linear map f : V → V , there is a proper subspace

{p(f) | p a polynomial} < L(V, V ).

Solution. 1. We need only show that for u ∈ U , we have p(f)(u) ∈ U . This follows by direct calculation,
beginning with setting p(z) = a0 + a1z + · · ·+ anz

n. Then, we have

p(f)(u) = a0 · u+ a1f(u) + · · ·+ anf
◦n(u).

Each of the terms on the right is a member of U , since U is invariant and closed under scalar multipli-
cation, and hence the whole sum is in U since U is closed under sums.

2. The map f is guaranteed to have an eigenvector v1, hence an invariant subspace U of dimension 1.
By the first part, every operator expressable as p(f) also has U as an invariant subspace. To show
properness, we thus only need to exhibit an operator g : V → V which does not have U invariant.
Extending the eigenvector v of f to a basis (v1, v2, . . . , vn) of V , we take g to be the operator that
swaps v1 and v2 and leaves the other basis elements undisturbed. (ECP)

4 For submission to Rohil Prasad

Problem 4.1. Let f : V → V be a linear operator. Prove that f/kerf is injective if and only if

(kerf) ∩ (imf) = 0.

Solution. Note that by definition, (f/kerf)(v + kerf) = f(v) + kerf .
Furthermore, injectivity of f/kerf is equivalent to showing that ker(f/kerf) = 0.
First, assume (kerf) ∩ (imf) = 0. This implies that for any v ∈ V , f(v) 6∈ kerf . For any v + U ,

we have (f/kerf)(v + kerf) = f(v) + kerf . Since f(v) 6∈ kerf , this affine set is nonzero in V/kerf , so
v + U 6∈ ker(f/kerf). Since this is true for any v + U , we find that the kernel of this map is 0.

For the other direction, we prove the contrapositive statement. If v ∈ (kerf) ∩ (imf) then let v′ be such
that f(v′) = v. It follows that (f/kerf)(v′ + kerf) = v + kerf . Since v ∈ kerf , this is the zero element of
V/kerf , so v′ + kerf ∈ ker(f/kerf). (RP)

Problem 4.2. Suppose that λ1, . . . , λn is a list of distinct real numbers. Show that eλ1x, . . . , eλnx is a list
of linearly independent functions R→ R. (Hint: find a linear operator on the space of functions R→ R for
which these are eigenvectors of distinct eigenvalues.)

Solution. Let D be the subspace of everywhere-differentiable functions R→ R. Note that eλix ∈ D for every
i, and furthermore if the eλix are linearly independent as elements of D, they are linearly independent as
elements of the whole space.

Now consider the differentiation operator d
dx : D → D. By definition, this operator is linear. Furthermore,

d
dx (eλix) = λie

λix. Since the λi are distinct, the eλix are eigenvectors of d
dx with distinct eigenvalues.

We complete the proof by inducting on n. For n = 1, it is clear that the set {eλ1x} is linearly independent.
Now assume that the statement holds for n− 1. For the sake of contradiction, assume that the eλix are

linearly dependent. Therefore, there exists constants ci not all zero such that
∑n
i=1 cie

λix = 0.
Assume without loss of generality that c1 6= 0 and set c′j = −cj/c1. Then by moving terms around and

dividing by c1, we have eλ1x =
∑n
j=2 c

′
je
λjx.

Multiplying by λ1, we find λ1e
λ1x =

∑n
j=2 λ1c

′
je
λjx.

If we instead apply d
dx to the expression, we find λ1e

λ1x =
∑n
j=2 λjc

′
je
λjx.

Subtracting these two identities, we get
∑n
j=2(λj − λ1)c′je

λjx = 0. However, by our inductive hypothesis

the set of functions {eλ2x, . . . , eλnx} is linearly independent. Since λj 6= λ1 for any j 6= 1, this implies that
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c′j is equal to 0 for every j. This in turn implies cj = 0 for every j > 1, so from our original identity we

have that c1e
λ1x = 0. This is clearly false, so we arrive at a contradiction and {eλ1x, . . . , eλnx} is linearly

independent. (RP)

Problem 4.3. Let V be an arbitrary vector space and let f : V → V be a linear function. Consider the
following three situations:

1. Every nonzero vector is an eigenvector of f .

2. The vector space V is finite dimensional of dimension n, and every subspace U ≤ V with dimU = n−1
is invariant under f .

3. The vector space V is finite dimensional of dimension n ≥ 3, and every subspace U ≤ V with dimU = 2
is invariant under f .

In each case, show that f is a scalar multiple of the identity operator.

Solution. 1. Note that if V is one-dimensional, then we are done since every vector is a scalar multiple of
another, so they will all have the same eigenvalues.

Now assuming V has dimension > 2, we can pick v1, v2 such that v2 is not a scalar multiple of v1. For
the sake of contradiction, assume f(v1) = λ1v1 and f(v2) = λ2v2 with λ1 6= λ2. Let λ be the eigenvalue of
v1 + v2. Now we have that f(v1 + v2) = λ(v1 + v2).

By linearity, the left-hand side evaluates to λ1v1 + λ2v2. Rearranging, we find that

(λ1 − λ)v1 = (λ− λ2)v2

Therefore, v2 is a scalar multiple of v1 and so we arrive at a contradiction.
2. Let {v1, v2, . . . , vn} be a basis of V . For 1 ≤ i ≤ n, let Ui be the span of all the basis vectors except

for vi.
By our assumption, each of the Ui are invariant under f . Therefore, we have an induced linear map

fi : V/Ui → V/Ui defined by fi(v + Ui) = f(v) + Ui for every i. However, by definition V/Ui is one-
dimensional, so fi is multiplication by some scalar λi.

Therefore, it follows that fi(vi+Ui) = λivi+Ui, so for every i we have f(vi) = λivi+ui for some ui ∈ Ui.
Observe that vi ∈ Uj for every j 6= i. Therefore, by invariance we must have f(vi) ∈ Uj for every j 6= i.

In order for f(vi) to be in Uj , we require its coefficient in the basis {v1, . . . , vn} at vj to be 0. Therefore, if
we write out ui =

∑
j 6=i cjvj , we must have cj = 0. Taking this over every j 6= i, it follows that ui = 0.

Now it remains to show that all the λi are equal. We will show λ1 = λ2 and the proof is analogous for
all others. Then observe that the span of {v1 + v2, v3, . . . , vn} is a subspace W of dimension n − 1 and is
therefore invariant under f . Therefore, f(v1 + v2) = λ1v1 + λ2v2 ∈W .

Therefore, there exist constants c, c3, c4, . . . , cn such that λ1v1 +λ2v2 = c(v1 + v2) +
∑
i≥3 civi. It follows

that (c− λ1)v1 + (c− λ2)v2 +
∑
i≥3 civi = 0. By linear independence of the vi, all of these coefficients are 0

and so λ1 = c = λ2.
3. Here we use the fact that an intersection of invariant subspaces is itself an invariant subspace.
Pick a basis {v1, v2, . . . , vn} of V . Let Ui be the span of vi, vi+1 for 1 ≤ i ≤ n− 1 and let Un be the span

of vn, v1.
By our assumption, each of the Ui are invariant. Furthermore, Ui ∩ Ui−1 is the span of vi for i > 1,

and U1 ∩ Un is the span of v1. These subspaces are also all invariant under f and one-dimensional, so the
restriction of f to the span of vi is multiplication by λi.

By a similar argument to Part 2, we show λ1 = λ2 and claim that the other equalities are analogous.
Note that the span of v1 + v2, v3 is an invariant subspace W of dimension 2. Therefore, we have f(v1 +

v2 + v3) ∈ W , so there exist constants c, d such that f(v1 + v2 + v3) = cv1 + cv2 + dv3. By definition,
f(v1 + v2 + v3) = λ1v1 + λ2v2 + λ3v3. By linear independence of v1, v2, v3 it follows that d = λ3, and
λ1 = c = λ2 as desired. (RP)
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