# Homework \#6 Solutions 

Thayer Anderson, Davis Lazowski, Handong Park, Rohil Prasad<br>Eric Peterson

## 1 For submission to Thayer Anderson

Problem 1.1. Let $V$ be a finite-dimensional real vector space, $f: V \rightarrow V$ a linear map, and $\lambda \in \mathbb{R}$ some real number. Show that there exists a second real number $\alpha \in \mathbb{R}$ with $|\lambda-\alpha|<\frac{1}{1000}$ such that $f-\alpha$ is invertible.
Solution. The linear map $f-\alpha$ will be invertible if it has no eigenvalues of 0 . This follows because if there are no zero eigenvalues then the kernel is trivial and thus $f$ must be an isomorphism as it is between two equal dimensional vector spaces. Suppose that $\lambda$ is an eigenvalue of $f-\alpha$. I claim that $\lambda+\alpha$ is an eigenvalue of $f$. This follows from the definitions. Suppose that $v$ is an eigenvector of $f-\alpha$ with eigenvalue $\lambda$, then:

$$
\begin{aligned}
& (f-\alpha)(v)=\lambda v \\
\Rightarrow & f(v)=(\lambda+\alpha) v
\end{aligned}
$$

If $\alpha$ is not an eigenvalue of $f$, then 0 is not an eigenvalue of $f-\alpha$. The map $f$ has finitely many eigenvalues and for each eigenvalue of $f, k$, there are infinitely many numbers $\alpha$ satisfying $|\alpha-k|<\frac{1}{1000}$ thus there exists an $\alpha$ with the desired property.
(TA)
Problem 1.2. Let $A$ be an $(n \times n)$-matrix presenting a linear function $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

1. Suppose that the sum of the entries in each row of $A$ equals 1 . Show that 1 is an eigenvalue of $A$.
2. Suppose that the sum of the entries in each column of $A$ equals 1 . Show that 1 is an eigenvalue of $A$.

Solution. 1. The matrix $A$ can be represented as:

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

with the following relations on the entries:

$$
\begin{array}{r}
a_{11}+a_{12}+\cdots+a_{1 n}=1 \\
a_{21}+a_{22}+\cdots+a_{2 n}=1 \\
\vdots \\
a_{n 1}+a_{n 2}+\cdots+a_{n n}=1
\end{array}
$$

Let us consider the action of $A$ on an arbitrary vector $v=\left(x_{1}, \ldots, x_{n}\right)$ such that $A v=v$. Applying $A$ to $v$ we obtain the following expression:

$$
A v=\left(\begin{array}{c}
\sum_{i=1}^{n} a_{1 i} x_{i} \\
\vdots \\
\sum_{i=1}^{n} a_{n i} x_{i}
\end{array}\right)
$$

We see that if $x_{i}=1$ for all $1 \leq i \leq n$ then

$$
A v=\left(\begin{array}{c}
\sum_{i=1}^{n} a_{1 i} \\
\vdots \\
\sum_{i=1}^{n} a_{n i}
\end{array}\right)=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

And $v=(1, \ldots, 1)$ so $v$ is an eigenvector of eigenvalue 1 . This completes the proof.
2. Given the matrix $A$ with the sum across the columns equal to 1 and encoding a map $f$, we take the dual map $f^{*}$ which is encoded by the matrix $A^{T}$. We note that the sum of the entries in each row of $A^{T}$ is equal to 1 . It follows that $f^{*}$ has an eigenvalue of 1 . This means that $f^{*}-1$ is not invertible. Applying Axler's theorem about the row rank and the column rank, we see that $\left(f^{*}-1\right)^{*}=f-1$ is not invertible if and only if $f^{*}-1$ is not invertible. Therefore 1 is an eigenvalue of $f$.

$$
\begin{array}{r}
{\left[f^{*}\left(v^{*}\right)\right](v)=v^{*}(v)} \\
\Rightarrow v^{*} f(v)=v^{*}(v \\
v^{*}(f(v))=1
\end{array}
$$

It follows that $f(v)=v$. Thus $f$ has an eigenvalue of 1 .

Problem 1.3. Let $V$ be finite dimensional and let $f: V \rightarrow V$ a linear function. Suppose that $v \in V$ is a non-zero vector, and suppose that $p$ is a nonzero polynomial with $p(f)(v)=0$, and suppose that there are no polynomials of degree less than that of $p$ which have this property. Show that every zero of $p$ is an eigenvalue of $f$.

Solution. Suppose that $k$ is a zero of $p$. Then using our machinery from class, we can factor $p$ as follows:

$$
p(x)=(x-k) q(x)
$$

where $q$ is a polynomial of degree $\operatorname{deg} p-1$. Then consider $p(f)(v)$ :

$$
p(f)(v)=(f-k) q(f)(v)=0
$$

Since $q$ has degree less than that of $p$, it follows that $q(f)(v):=w \neq 0$. Then $w$ is a vector such that $(f-k)(w)=0$, then $w$ is an eigenvector of $f$ with eigenvalue $k$ and the proof is complete.

## 2 For submission to Davis Lazowski

Problem 2.1. Suppose $f: V \rightarrow V$ is invertible. Show that $\lambda$ is an eigenvalue of $f$ if and only if $\lambda^{-1}$ is an eigenvalue of $f^{-1}$, and show that $v$ is an eigenvector of $f$ if and only if it is also an eigenvector of $f^{-1}$.

Solution. Suppose fv $=\lambda v$.
Then $v=f^{-1}(f v)=f^{-1}(\lambda v)=\lambda f^{-1}(v)$, so that by diving by $\lambda$ then $\lambda^{-1} v=f^{-1} v$.
This proves one direction, for both statements. But our choice of $f$ was totally arbitrary, and we could do the same things for $f^{-1}$, so by symmetry done.

Problem 2.2. Suppose $f: V \rightarrow V$ is a linear transformation with $\operatorname{dim} \operatorname{im} f=k$. Show that $f$ has at most $(k+1)$ distinct eigenvalues.

Solution. If $f v=\lambda v$, and $f w=\lambda^{\prime} w$, with $\lambda \neq \lambda^{\prime}$, then $v$ and $w$ are linearly independent. There are at most $\operatorname{dimimf}=\mathrm{k}$ linearly independent vectors in the image, plus 0 . So there are at most $k+1$ distinct eigenvalues.

Problem 2.3. Suppose $V$ is a complex vector space, $f: V \rightarrow V$ a linear function, and $p$ a complex polynomial. Show that $\alpha \in \mathbb{C}$ is an eigenvalue of $p(f)$ if and only if $\alpha=p(\lambda)$ for some eigenvalue $\lambda$ of $f$. Then, show that this result fails if $V$ is merely assumed to be a real vector space and $p$ a real polynomial.

Solution. Suppose $\lambda v=f v$.
Then

$$
p(f) v=\sum_{j=1}^{n} f^{j} v=\sum_{j=1}^{n} \lambda^{j} v=p(\lambda) v=\alpha v
$$

Finishing the first direction.
In the other direction, suppose $p(f) v=\alpha v$. In particular, $p-\alpha$ is a polynomial, and $[p-\alpha](f) v=0$.
By problem 1.3, if $p-\alpha$ is the lowest degree polynomial such that $[p-\alpha](f) v=0$, then we're done, because every zero of $[p-\alpha]$ is an eigenvalue of $f$, and if $p(\lambda)-\alpha=0$, then $p(\lambda)=\alpha$.

Otherwise, suppose there exists $g(f) v=0, \operatorname{deg} g<\operatorname{deg}[p-\alpha]$, so that $\operatorname{deg} g$ is minimal. Then by the division algorithm $[p-\alpha]=h g+r$, with $\operatorname{deg} r<\operatorname{deg} g$. But

$$
r(f) v=[p-\alpha](f) v-h g(f) v=0
$$

So by our assumption of minimality, $r=0$. Therefore, $[p-\alpha]=h g$.
Therefore, all the zeroes of $g$ are also zeroes of $[p-\alpha]$, therefore done.
An example of how this fails for the reals.
Let $f: V \rightarrow V, f(w)=w-v$, for some $v \in V$.
Then let $p=x^{2} . p(f)(v)=-v$, so that -1 is an eigenvalue of $p(f)$. But there is no $\lambda$ such that $\lambda^{2}=-1$ over the reals.

Precisely, this problem fails over the reals because some polynomials might not have zeroes over the reals, for example $x^{2}+1$.

Side note about extending problem 1.3 to infinite dimensions.
Problem 1.3 assumes finite dimensionality but can easily be extended to the infinite dimensional case. Let $\langle v\rangle$ denote the subspace of $V$ generated by $v$. Then let $n=\operatorname{deg} p$. The space $\tilde{V}=\langle v\rangle+\langle f(v)\rangle+\cdots+\left\langle f^{n}(v)\right\rangle$ is finite dimensional.

Apply problem 1.3 to $\tilde{f}(v): \tilde{V} \rightarrow \tilde{V}$, with $\tilde{f}(v)=f(v)$. Then because $p(\tilde{f})(v)=p(f)(v)$, and $\tilde{f} w=$ $\lambda w \Longleftrightarrow f w=\lambda w$, this proves the infinite dimensional case.

## 3 For submission to Handong Park

Problem 3.1. Let $p: V \rightarrow V$ satisfy $p \circ p=p$. Show that $V=\operatorname{ker} p \oplus \operatorname{im} p$.
Solution. First, we express an arbitrary $v \in V$ as $v=p v+(v-p v)$, which is the sum of a vector $p v \in \operatorname{im} p$ and $(v-p v) \in \operatorname{ker} p$, since

$$
p(v-p v)=p v-p p v=p v-p v=0
$$

This shows $V=\operatorname{ker} p+\operatorname{im} p$. To show that the sum is direct, we show that $\operatorname{ker} p \cap \operatorname{im} p=0$. So, suppose $v \in \operatorname{ker} p \cap \operatorname{im} p$ satisfies $p v=0$ and also $p w=v$ for some $w \in V$. Then $p p w=p w$ gives $p v=v$ and hence we have calculated $v=0$.
(ECP)
Problem 3.2. Suppose that $f: V \rightarrow V$ is a linear operator with $f \circ f=\mathrm{id}$, and suppose that -1 is not an eigenvalue of $f$. Show that $f=\mathrm{id}$.

Solution. If $f \circ f=\mathrm{id}$, then $f \circ f-\mathrm{id}=0$ factors as $(f-\mathrm{id})(f+\mathrm{id})=0$. Since -1 is not an eigenvalue of $f$, the operator $f+\mathrm{id}$ is invertible, hence we get $f-\mathrm{id}=(f-\mathrm{id})(f+\mathrm{id})(f+\mathrm{id})^{-1}=0(f+\mathrm{id})^{-1}=0$. It follows that $f=\mathrm{id}$.

Problem 3.3. 1. Suppose that a subspace $U \leq V$ is invariant under a linear function $f: V \rightarrow V$. Show that $U$ is also invariant under $p(f)$, where $p$ is any polynomial.
2. Now suppose $V$ is a complex vector space with dimension $1<\operatorname{dim} V<\infty$. Show that for any particular linear map $f: V \rightarrow V$, there is a proper subspace

$$
\{p(f) \mid p \text { a polynomial }\}<\mathcal{L}(V, V)
$$

Solution. 1. We need only show that for $u \in U$, we have $p(f)(u) \in U$. This follows by direct calculation, beginning with setting $p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$. Then, we have

$$
p(f)(u)=a_{0} \cdot u+a_{1} f(u)+\cdots+a_{n} f^{\circ n}(u)
$$

Each of the terms on the right is a member of $U$, since $U$ is invariant and closed under scalar multiplication, and hence the whole sum is in $U$ since $U$ is closed under sums.
2. The map $f$ is guaranteed to have an eigenvector $v_{1}$, hence an invariant subspace $U$ of dimension 1 . By the first part, every operator expressable as $p(f)$ also has $U$ as an invariant subspace. To show properness, we thus only need to exhibit an operator $g: V \rightarrow V$ which does not have $U$ invariant. Extending the eigenvector $v$ of $f$ to a basis $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ of $V$, we take $g$ to be the operator that swaps $v_{1}$ and $v_{2}$ and leaves the other basis elements undisturbed.
(ECP)

## 4 For submission to Rohil Prasad

Problem 4.1. Let $f: V \rightarrow V$ be a linear operator. Prove that $f / \operatorname{ker} f$ is injective if and only if

$$
(\operatorname{ker} f) \cap(\operatorname{im} f)=0
$$

Solution. Note that by definition, $(f / \operatorname{ker} f)(v+\operatorname{ker} f)=f(v)+\operatorname{ker} f$.
Furthermore, injectivity of $f / \operatorname{ker} f$ is equivalent to showing that $\operatorname{ker}(f / \operatorname{ker} f)=0$.
First, assume $(\operatorname{ker} f) \cap(\operatorname{im} f)=0$. This implies that for any $v \in V, f(v) \notin \operatorname{ker} f$. For any $v+U$, we have $(f / \operatorname{ker} f)(v+\operatorname{ker} f)=f(v)+\operatorname{ker} f$. Since $f(v) \notin \operatorname{ker} f$, this affine set is nonzero in $V / \operatorname{ker} f$, so $v+U \notin \operatorname{ker}(f / \operatorname{ker} f)$. Since this is true for any $v+U$, we find that the kernel of this map is 0 .

For the other direction, we prove the contrapositive statement. If $v \in(\operatorname{ker} f) \cap(\operatorname{im} f)$ then let $v^{\prime}$ be such that $f\left(v^{\prime}\right)=v$. It follows that $(f / \operatorname{ker} f)\left(v^{\prime}+\operatorname{ker} f\right)=v+\operatorname{ker} f$. Since $v \in \operatorname{ker} f$, this is the zero element of $V / \operatorname{ker} f$, so $v^{\prime}+\operatorname{ker} f \in \operatorname{ker}(f / \operatorname{ker} f)$.

Problem 4.2. Suppose that $\lambda_{1}, \ldots, \lambda_{n}$ is a list of distinct real numbers. Show that $e^{\lambda_{1} x}, \ldots, e^{\lambda_{n} x}$ is a list of linearly independent functions $\mathbb{R} \rightarrow \mathbb{R}$. (Hint: find a linear operator on the space of functions $\mathbb{R} \rightarrow \mathbb{R}$ for which these are eigenvectors of distinct eigenvalues.)

Solution. Let $D$ be the subspace of everywhere-differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$. Note that $e^{\lambda_{i} x} \in D$ for every $i$, and furthermore if the $e^{\lambda_{i} x}$ are linearly independent as elements of $D$, they are linearly independent as elements of the whole space.

Now consider the differentiation operator $\frac{d}{d x}: D \rightarrow D$. By definition, this operator is linear. Furthermore, $\frac{d}{d x}\left(e^{\lambda_{i} x}\right)=\lambda_{i} e^{\lambda_{i} x}$. Since the $\lambda_{i}$ are distinct, the $e^{\lambda_{i} x}$ are eigenvectors of $\frac{d}{d x}$ with distinct eigenvalues.

We complete the proof by inducting on $n$. For $n=1$, it is clear that the set $\left\{e^{\lambda_{1} x}\right\}$ is linearly independent.
Now assume that the statement holds for $n-1$. For the sake of contradiction, assume that the $e^{\lambda_{i} x}$ are linearly dependent. Therefore, there exists constants $c_{i}$ not all zero such that $\sum_{i=1}^{n} c_{i} e^{\lambda_{i} x}=0$.

Assume without loss of generality that $c_{1} \neq 0$ and set $c_{j}^{\prime}=-c_{j} / c_{1}$. Then by moving terms around and dividing by $c_{1}$, we have $e^{\lambda_{1} x}=\sum_{j=2}^{n} c_{j}^{\prime} e^{\lambda_{j} x}$.

Multiplying by $\lambda_{1}$, we find $\lambda_{1} e^{\lambda_{1} x}=\sum_{j=2}^{n} \lambda_{1} c_{j}^{\prime} e^{\lambda_{j} x}$.
If we instead apply $\frac{d}{d x}$ to the expression, we find $\lambda_{1} e^{\lambda_{1} x}=\sum_{j=2}^{n} \lambda_{j} c_{j}^{\prime} e^{\lambda_{j} x}$.
Subtracting these two identities, we get $\sum_{j=2}^{n}\left(\lambda_{j}-\lambda_{1}\right) c_{j}^{\prime} e^{\lambda_{j} x}=0$. However, by our inductive hypothesis the set of functions $\left\{e^{\lambda_{2} x}, \ldots, e^{\lambda_{n} x}\right\}$ is linearly independent. Since $\lambda_{j} \neq \lambda_{1}$ for any $j \neq 1$, this implies that
$c_{j}^{\prime}$ is equal to 0 for every $j$. This in turn implies $c_{j}=0$ for every $j>1$, so from our original identity we have that $c_{1} e^{\lambda_{1} x}=0$. This is clearly false, so we arrive at a contradiction and $\left\{e^{\lambda_{1} x}, \ldots, e^{\lambda_{n} x}\right\}$ is linearly independent.

Problem 4.3. Let $V$ be an arbitrary vector space and let $f: V \rightarrow V$ be a linear function. Consider the following three situations:

1. Every nonzero vector is an eigenvector of $f$.
2. The vector space $V$ is finite dimensional of dimension $n$, and every subspace $U \leq V$ with $\operatorname{dim} U=n-1$ is invariant under $f$.
3. The vector space $V$ is finite dimensional of dimension $n \geq 3$, and every subspace $U \leq V$ with $\operatorname{dim} U=2$ is invariant under $f$.

In each case, show that $f$ is a scalar multiple of the identity operator.
Solution. 1. Note that if $V$ is one-dimensional, then we are done since every vector is a scalar multiple of another, so they will all have the same eigenvalues.

Now assuming $V$ has dimension $>2$, we can pick $v_{1}, v_{2}$ such that $v_{2}$ is not a scalar multiple of $v_{1}$. For the sake of contradiction, assume $f\left(v_{1}\right)=\lambda_{1} v_{1}$ and $f\left(v_{2}\right)=\lambda_{2} v_{2}$ with $\lambda_{1} \neq \lambda_{2}$. Let $\lambda$ be the eigenvalue of $v_{1}+v_{2}$. Now we have that $f\left(v_{1}+v_{2}\right)=\lambda\left(v_{1}+v_{2}\right)$.

By linearity, the left-hand side evaluates to $\lambda_{1} v_{1}+\lambda_{2} v_{2}$. Rearranging, we find that

$$
\left(\lambda_{1}-\lambda\right) v_{1}=\left(\lambda-\lambda_{2}\right) v_{2}
$$

Therefore, $v_{2}$ is a scalar multiple of $v_{1}$ and so we arrive at a contradiction.
2. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis of $V$. For $1 \leq i \leq n$, let $U_{i}$ be the span of all the basis vectors except for $v_{i}$.

By our assumption, each of the $U_{i}$ are invariant under $f$. Therefore, we have an induced linear map $f_{i}: V / U_{i} \rightarrow V / U_{i}$ defined by $f_{i}\left(v+U_{i}\right)=f(v)+U_{i}$ for every $i$. However, by definition $V / U_{i}$ is onedimensional, so $f_{i}$ is multiplication by some scalar $\lambda_{i}$.

Therefore, it follows that $f_{i}\left(v_{i}+U_{i}\right)=\lambda_{i} v_{i}+U_{i}$, so for every $i$ we have $f\left(v_{i}\right)=\lambda_{i} v_{i}+u_{i}$ for some $u_{i} \in U_{i}$.
Observe that $v_{i} \in U_{j}$ for every $j \neq i$. Therefore, by invariance we must have $f\left(v_{i}\right) \in U_{j}$ for every $j \neq i$. In order for $f\left(v_{i}\right)$ to be in $U_{j}$, we require its coefficient in the basis $\left\{v_{1}, \ldots, v_{n}\right\}$ at $v_{j}$ to be 0 . Therefore, if we write out $u_{i}=\sum_{j \neq i} c_{j} v_{j}$, we must have $c_{j}=0$. Taking this over every $j \neq i$, it follows that $u_{i}=0$.

Now it remains to show that all the $\lambda_{i}$ are equal. We will show $\lambda_{1}=\lambda_{2}$ and the proof is analogous for all others. Then observe that the span of $\left\{v_{1}+v_{2}, v_{3}, \ldots, v_{n}\right\}$ is a subspace $W$ of dimension $n-1$ and is therefore invariant under $f$. Therefore, $f\left(v_{1}+v_{2}\right)=\lambda_{1} v_{1}+\lambda_{2} v_{2} \in W$.

Therefore, there exist constants $c, c_{3}, c_{4}, \ldots, c_{n}$ such that $\lambda_{1} v_{1}+\lambda_{2} v_{2}=c\left(v_{1}+v_{2}\right)+\sum_{i \geq 3} c_{i} v_{i}$. It follows that $\left(c-\lambda_{1}\right) v_{1}+\left(c-\lambda_{2}\right) v_{2}+\sum_{i \geq 3} c_{i} v_{i}=0$. By linear independence of the $v_{i}$, all of these coefficients are 0 and so $\lambda_{1}=c=\lambda_{2}$.
3. Here we use the fact that an intersection of invariant subspaces is itself an invariant subspace.

Pick a basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of $V$. Let $U_{i}$ be the span of $v_{i}, v_{i+1}$ for $1 \leq i \leq n-1$ and let $U_{n}$ be the span of $v_{n}, v_{1}$.

By our assumption, each of the $U_{i}$ are invariant. Furthermore, $U_{i} \cap U_{i-1}$ is the span of $v_{i}$ for $i>1$, and $U_{1} \cap U_{n}$ is the span of $v_{1}$. These subspaces are also all invariant under $f$ and one-dimensional, so the restriction of $f$ to the span of $v_{i}$ is multiplication by $\lambda_{i}$.

By a similar argument to Part 2, we show $\lambda_{1}=\lambda_{2}$ and claim that the other equalities are analogous.
Note that the span of $v_{1}+v_{2}, v_{3}$ is an invariant subspace $W$ of dimension 2. Therefore, we have $f\left(v_{1}+\right.$ $\left.v_{2}+v_{3}\right) \in W$, so there exist constants $c, d$ such that $f\left(v_{1}+v_{2}+v_{3}\right)=c v_{1}+c v_{2}+d v_{3}$. By definition, $f\left(v_{1}+v_{2}+v_{3}\right)=\lambda_{1} v_{1}+\lambda_{2} v_{2}+\lambda_{3} v_{3}$. By linear independence of $v_{1}, v_{2}, v_{3}$ it follows that $d=\lambda_{3}$, and $\lambda_{1}=c=\lambda_{2}$ as desired.

