Homework \#5

Math 25a
Due: October 12, 2016

Guidelines:

- You must type up your solutions to this assignment in $\mathrm{A}^{A} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$. There's a template available on the course website.
- This homework is divided into four parts. You will turn each part in to a separate CA's mailbox on the second floor of the science center. So, be sure to do the parts on separate pieces of paper.
- If your submission to any particular CA takes multiple pages, then staple them together. If you don't own one (though you should), a stapler is available in the Cabot Library in the Science Center.
- Be sure to put your name at the top of each part, so that we know who to score!
- If you collaborate with other students, please announce that somewhere (ideally: next to the problems you collaborated on) so that we don't get suspicious of hyper-similar answers.
Failure to meet these guidelines may result in loss of points. (Staple your pages!)

1 For submission to Thayer Anderson

Problem 1.1. Suppose that both V and W are finite dimensional. Show that the assignment

$$
\begin{aligned}
\mathcal{L}(V, W) & \rightarrow \mathcal{L}\left(W^{*}, V^{*}\right) \\
\varphi & \mapsto \varphi^{*}
\end{aligned}
$$

is an isomorphism of vector spaces.
Problem 1.2. Consider a linear map $f: V \rightarrow V$ and an isomorphism $\varphi: V \xrightarrow{\simeq} W$.

1. Prove that f and $\varphi \circ f \circ \varphi^{-1}: W \rightarrow W$ have the same eigenvalues.
2. What is the relationship between eigenvectors for f and eigenvectors for $\varphi \circ f \circ \varphi^{-1}$?

Problem 1.3. Show that a degree m polynomial p has m distinct zeroes exactly if p and its derivative p^{\prime} have no zeroes in common.

2 For submission to Davis Lazowski

Problem 2.1. Suppose p is a complex polynomial. Show that $q=p \cdot \bar{p}$ is a polynomial with real coefficients.
Problem 2.2. Consider a complex vector space V, a map $f: V \rightarrow V$, and a basis of V in which f is expressed by a matrix M with all real entries. Show that if λ is an eigenvalue of f, then so is $\bar{\lambda}$.

Problem 2.3. Suppose that V is finite-dimensional and let $f, g: V \rightarrow V$ be linear functions. Show that $f \circ g$ and $g \circ f$ have the same eigenvalues.

3 For submission to Handong Park

Problem 3.1. Suppose that $U_{1}, \ldots, U_{n} \leq V$ are invariant subspaces under an operator $f: V \rightarrow V$. Show that their intersection $U_{1} \cap \cdots \cap U_{n}$ and their subspace sum $U_{1}+\cdots+U_{n}$ are invariant under f as well.

Problem 3.2. Find all eigenvalues and eigenvectors of the backward shift operator $f: K^{\infty} \rightarrow K^{\infty}$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)
$$

Problem 3.3. Suppose f is a nonzero polynomial, and let U be the subspace of all polynomials P defined by

$$
U=\{f \cdot g \mid g \text { a polynomial }\} .
$$

Show that $\operatorname{dim} P / U=\operatorname{deg} f$, and exhibit a basis of P / U.
Problem 3.4. Show that every real polynomial of odd degree has a zero.

4 For submission to Rohil Prasad

Problem 4.1. Show that the dual basis of $\left(1, x, x^{2}, \ldots, x^{n}\right)$ of P_{n} is $\varphi_{0}, \ldots, \varphi_{n}$ defined by

$$
\varphi_{j}(f)=\frac{f^{(j)}(0)}{j!}
$$

Problem 4.2. Consider the differentiation operator on the vector space P of all polynomials:

$$
\frac{d}{d x}: P \rightarrow P
$$

Calculate all the eigenvectors and eigenvalues of $\frac{d}{d x}$.
Problem 4.3. Let p be a complex polynomial of degree m, and suppose that there are distinct $x_{0}, \ldots, x_{m} \in \mathbb{R}$ with $p\left(x_{j}\right) \in \mathbb{R}$ for all j. Prove that p is actually a real polynomial.

