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1 For submission to Thayer Anderson

Problem 1.1. Suppose that both V and W are finite dimensional. Show that the assignment

L(V,W )→ L(W ∗, V ∗)

ϕ 7→ ϕ∗

is an isomorphism of vector spaces.

Solution. Let the given assignment be called Φ. We wish to show that Φ is surjective, injective, and linear.
First we prove linearity. Suppose f, g ∈ L(V,W ) and c ∈ K. Then

Φ(f + cg) = (f + cg)∗

I claim that (f + cg)∗ = f∗ + cg∗. To prove this, I will consider the following quantity:

(f + cg)∗(λ)(v)

for λ ∈W ∗ and v ∈ V . By the definition of the dual map this is equal to

λ((f + cg)(v)) = λ(f(v) + cg(v))

= λ(f(v)) + cλ(g(v)) = f∗(λ)(v) + cg∗(λ)(v)

This completes the proof of linearity. To prove that it is an isomorphism, I first prove that it is injective.
Suppose Φ(f) = f∗ = 0. Then take a basis w1, . . . , wn for W . Then

0 = f∗(w∗i )(v) = w∗i (f(v))

for arbitrary v ∈ V . It follows that each dual basis element is mapped to 0 and therefore f∗ = 0. This
completes the proof of injectivity. Moreover, the dimensions of the vector spaces are equal so the map is
necessarily an isomorphism. (TA)

Problem 1.2. Consider a linear map f : V → V and an isomorphism ϕ : V 'W .

1. Prove that f and ϕ ◦ f ◦ ϕ−1 : W →W have the same eigenvalues.

2. What is the relationship between eigenvectors for f and eigenvectors for ϕ ◦ f ◦ ϕ−1.

Solution. I will prove these parts together, as the one falls out from the other. Suppose v ∈ V is an
eigenvector of f with eigenvalue λ. Then consider

ϕ ◦ f ◦ ϕ−1(ϕ(v)) = ϕ ◦ f(v) = λϕ(v)

and thus ϕ(v) is an eigenvector of ϕ ◦ f ◦ϕ−1 with eigenvalue λ. This logic has a slight flaw if ϕ(v) = 0, but
in that case v = 0 by injectivity of ϕ and thus v was not an eigenvector.
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This tells us that the eigenvalues of f are a subset of the eigenvalues of ϕ ◦ f ◦ ϕ−1. Similarly, suppose
w is an eigenvector of ϕ ◦ f ◦ ϕ−1 with eigenvalue λ. Then w = ϕ(v) for some fixed v ∈ V (by surjectivity
of ϕ) and we see that

λw = ϕ ◦ f ◦ ϕ−1ϕ(v) = ϕ ◦ f(v)

⇒ λϕ−1(w) = f(v)

⇒ λv = f(v)

This completes the proof that the eigenvalues are shared are gives the second relationship between eigenvec-
tors. (TA)

Problem 1.3. Show that a degree m polynomial p has m distinct zeroes exactly if p and its derivative p′

have no zeroes in common.

Solution. Suppose p and p′ have a root in common. Then we may write

p(x) = (x− a)r1(x)

p′(x) = (x− a)r2(x)

for some polynomials r1 and r2. Then we calculate

p′(x) = (x− a)r′1(x) + r1(x) = (x− a)r2(x)

From this form we see that (x− a) divides r1 and therefore a is at least a double root of p.
For the other direction, suppose that p has a double root, that is

p = (x− a)2r(x)

for some polynomial r. Then we calculate the derivative:

p′ = 2(x− a)r(x) + (x− a)2r′(x)

and thus a is a root of p′ and p has a root in common with p′. This completes the proof. (TA)

2 For submission to Davis Lazowski

Problem 2.1. Suppose p is a complex polynomial. Show that q = p ·p is a polynomial with real coefficients.

Solution. Certainly, q(x) = p(x)p(x) is a real number for all real x. In particular, q(j)(0) ∈ R∀j.
Therefore ϕj(q) : ϕj(q) = q(j)(0)

j! ∈ L(Pn,R), where n = deg q. In particular, by problem 4.1 this means

that the dual vector q∗ ∈ (Pn)∗ where (Pn)∗ is over the field R because it is in the span of the basis vectors.
Therefore, q ∈ Pn as a vector space over the reals. Therefore, q =

∑n
j=1 λjx

j , where λj ∈ R, therefore
done. (DL)

Problem 2.2. Consider a complex vector space V , a map f : V → V , and a basis of V in which f is
expressed by a matrix M with all real entries. Show that if λ is an eigenvalue of f , then so is λ.

Solution. Let λw = fw. In matrix form, with the basis V , λ(
∑n

j=1 αjvj) = A(
∑n

j=1 αjvj). Since A has all

real entries, A = A.
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Therefore

λ(

n∑
j=1

αjvj) = A(

n∑
j=1

αjvj)

=⇒ λ(

n∑
j=1

αjvj) = A(

n∑
j=1

αjvj)

=⇒ λ(

n∑
j=1

αjvj) = A(

n∑
j=1

αjvj)

=⇒ λ(

n∑
j=1

αjvj) = f(

n∑
j=1

αjvj) (DL)

Problem 2.3. Suppose that V is finite-dimensional and let f, g : V → V be linear functions. Show that
f ◦ g and g ◦ f have the same eigenvalues.

Solution. Let [f ◦ g]w = λw. Then g ◦ [f ◦ g]w = g(λw) = λg(w). So that, by associativity of function
composition, g ◦ f(gw) = λgw.

Therefore gw is an eigenvector of g ◦ f , with same eigenvalue. Symmetrically

[g ◦ f ]v = αv

=⇒ f [g ◦ f ]v = f(αv)

=⇒ [f ◦ g](fv) = α(fv)

So that fv is an eigenvector of f ◦ g with eigenvalue also α. (DL)

3 For submission to Handong Park

Problem 3.1. Suppose that U1, . . . , Un ≤ V are invariant subspaces under an operator f : V → V . Show
that their intersection U1 ∩ · · · ∩ Un and their subspace sum U1 + · · ·+ Un are invariant under f as well.

Solution. We prove each assertion in turn:

1. A vector v ∈ U1∩· · ·∩Un is simultaneously a member of each Uj . It follows that f(v) is simultaneously
a member of each Uj , since each Uj is invariant under f . This is the same as saying f(v) ∈ U1∩· · ·∩Un,
so that U1 ∩ · · · ∩ Un is invariant under f as well.

2. A vector v ∈ U1 + · · · + Un admits (possibly nonunique) expression as v = u1 + · · · + un for uj ∈ Uj .
Applying f to this decomposition gives

f(v) = f(u1 + · · ·+ un) = f(u1) + · · ·+ f(un) = u′1 + · · ·+ u′n,

where we have used that f(uj) = u′j is again a member of Uj . From this, it follows that f(v) ∈
U1 + · · ·+ Un, so that U1 + · · ·+ Un is invariant under f . (ECP)

Problem 3.2. Find all eigenvalues and eigenvectors of the backward shift operator f : K∞ → K∞ defined
by

f(x1, x2, x3, . . .) = (x2, x3, x4, . . .).

Solution. The eigenvector equation for this operator is

λ · (x1, x2, x3, . . .) = (x2, x3, x4, . . .).
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Expanding this into a system of equations, we have

λx1 = x2, λx2 = x3, λx3 = x4, . . . .

We see that for any choice of x1 and λ, the rest of the xj are uniquely determined. It follows that each
eigenspace E(k) is 1–dimensional, for any choice of k ∈ K. (ECP)

Problem 3.3. Suppose f is a nonzero polynomial, and let U be the subspace of all polynomials P defined
by

U = {f · g | g a polynomial}.
Show that dimP/U = deg f , and exhibit a basis of P/U .

Solution. Write
f = anx

n + · · ·+ a1x+ a0

for an 6= 0, and write π : P → P/U for the quotient. The key observation is that, after projection along π,
we have

π(anx
n + · · ·+ a1x+ a0) = π(0)

π(anx
n) + π(an−1x

n−1 + · · ·+ a1x+ a0) = 0

π(anx
n) = −π(an−1x

n−1 + · · ·+ a1x+ a0).

In fact, f(x) · xm is also a member of U , so

π(anx
n+m) = −π(an−1x

n+m−1 + · · ·+ a1x
m+1 + a0x

m).

Induction shows that any polynomial of degree at least n can be rewritten as a polynomial of degree at most
n − 1, so that (π(1), π(x), . . . , π(xn−1)) forms a spanning set of P/U . If there were a linear dependence
among these elements, then we would have

k0π(1) + k1π(x) + · · ·+ kn−1π(xn−1) = 0

π(k0 + k1x+ · · ·+ kn−1x
n−1) = 0,

so that k0 + k1x + · · · + kn−1x
n−1 ∈ kerπ = U . This cannot be: because every member of U is formed as

f · g, the degree of every member of U satisfies

deg(f · g) = deg f + deg g = n+ deg g ≥ n.

As this list spans and is linearly independent, it forms a basis. The length of the list shows

dimP/U = n. (ECP)

Solution. Another way in which we can understand the proof and the result is to think of P/U in this case
as an affine space given by the set of all possible polynomial remainders r(x) when we divide any possible
polynomial in P by the fixed polynomial f(x). What our proof from above aims to do is to formalize the
idea that given any polynomial p(x), it can be written as (via long division of polynomials):

p(x) = r(x) + f(x) · g(x), where f(x) · g(x) ∈ U

In other words, whenever we have a polynomial that is of degree n or greater, it can be ”divided” into
a multiple of f by some polynomial g added to some remainder polynomial r of degree strictly less than
the degree of f . In P/U , we only care about the remainder r(x) and not the portion that is a multiple of
f(x) ∈ U , since any multiples of f(x) provide no new unique polynomials when we mod out by U . So in
order to have a basis for P/U , all we need to do is have a basis that generates the possible remainders r(x)
of degree n − 1 down to 0, and 1, x, x2, ..., xn−1 is one such simple basis, which we can demonstrate to be
both linearly independent and generating.

(HP)
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Problem 3.4. Show that every real polynomial of odd degree has a zero.

Solution. Axler assures us that every real polynomial factors essentially uniquely as a product of a scalar,
some linear factors, and some irreducible quadratic factors. If the factorization of our real polynomial f
consisted solely of quadratic factors, its expansion would be of even degree. Instead, we know that f has odd
degree, so that there must be at least one linear factor, say (x− b). It then follows that f(b) = 0. (ECP)

Solution. Alternatively, we showed in class that eventually the leading term of a polynomial dominates the
rest of the expression. It follows that for large positive values, the polynomial f takes the sign of its leading
coefficient an, and for large negative values, the polynomial f takes the sign of −an. Since an 6= 0, these are
opposite signs, and the Intermediate Value Theorem guarantees the existence of a zero. (ECP)

4 For submission to Rohil Prasad

Problem 4.1. Show that the dual basis of (1, x, x2, . . . , xn) of Pn is ϕ0, . . . , ϕn defined by

ϕj(f) =
f (j)(0)

j!

Solution. It suffices to show that ϕj(x
j) = 1 and ϕj(x

i) = 0 for every i 6= j.
If i < j, then (xi)(j) = 0 and so ϕj(x

i) = 0.
If i = j, then (xj)(j) = j! and so ϕj(x

j) = j!/j! = 1.
If i > j, then (xi)(j) = i(i − 1) . . . (i − j + 1)xi−j , which is equal to 0 when evaluated at 0. Therefore,

ϕj(x
j) = 0 as well. (RP)

Problem 4.2. Consider the differentiation operator on the vector space P of all polynomials:

d

dx
: P → P

Calculate all the eigenvectors and eigenvalues of P .

Solution. We will show that the only eigenvalue is 0 with corresponding eigenvector 1 (or any λ ∈ K).
The fact that these are an eigenvalue/eigenvector is immediate by the definition of differentiation.
Now we will show no polynomial of degree d ≥ 1 can be an eigenvector. Assume for the sake of contra-

diction that p(x) =
∑d

i=0 cix
i with cd 6= 0 is an eigenvector of the differentiation operator with eigenvalue

λ. By definition, dp/dx =
∑d−1

i=0 (i+ 1)ci+1x
i.

Comparing the degree d coefficients of λp and dp/dx, we find that λcd = 0. Since cd 6= 0, we must have
λ = 0.

However, if λ = 0, then dp/dx = λp = 0. The degree d − 1 coefficient of dp/dx is dcd 6= 0, so we arrive
at a contradiction and p is not an eigenvector of the differentiation operator. (RP)

Problem 4.3. Let p be a complex polynomial of degree m and suppose that there are distinct x0, . . . , xm ∈ R
with p(xj) ∈ R for all j. Prove that p is actually a real polynomial.

Solution. We will prove this by induction on m.
In this base case, let m = 0. Then p is a constant c ∈ C, so if p(x0) ∈ R then we must have c = p(x0) ∈ R.
Now assume that this holds for polynomials of degree m − 1. Let p be a complex polynomial of degree

m such that x0, . . . , xm ∈ R satisfy p(xj) ∈ R for all j.
Since p(xm) ∈ R, we have p has real coefficients if and only if p−p(xm) has real coefficients. By definition,

p− p(xm) has xm as a root, so it factors as a product (x− xm)q, where q is a complex polynomial of degree
m− 1.

Plugging in xj for j < m, we find that (xj −xm)q(xj) ∈ R. Since xj −xm ∈ R, it follows that q(xj) ∈ R.
Since q has degree m − 1 and x0, . . . , xm−1 satisfy q(xj) ∈ R for every j, by our inductive hypothesis q is
real and therefore p− p(xm) is real, which implies p is real. (RP)
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