Homework \#5 Solutions

Thayer Anderson, Davis Lazowski, Handong Park, Rohil Prasad
Eric Peterson

1 For submission to Thayer Anderson

Problem 1.1. Suppose that both V and W are finite dimensional. Show that the assignment

$$
\begin{array}{r}
\mathcal{L}(V, W) \rightarrow \mathcal{L}\left(W^{*}, V^{*}\right) \\
\varphi \mapsto \varphi^{*}
\end{array}
$$

is an isomorphism of vector spaces.
Solution. Let the given assignment be called Φ. We wish to show that Φ is surjective, injective, and linear. First we prove linearity. Suppose $f, g \in \mathcal{L}(V, W)$ and $c \in K$. Then

$$
\Phi(f+c g)=(f+c g)^{*}
$$

I claim that $(f+c g)^{*}=f^{*}+c g^{*}$. To prove this, I will consider the following quantity:

$$
(f+c g)^{*}(\lambda)(v)
$$

for $\lambda \in W^{*}$ and $v \in V$. By the definition of the dual map this is equal to

$$
\begin{array}{r}
\lambda((f+c g)(v))=\lambda(f(v)+c g(v)) \\
=\lambda(f(v))+c \lambda(g(v))=f^{*}(\lambda)(v)+c g^{*}(\lambda)(v)
\end{array}
$$

This completes the proof of linearity. To prove that it is an isomorphism, I first prove that it is injective. Suppose $\Phi(f)=f^{*}=0$. Then take a basis w_{1}, \ldots, w_{n} for W. Then

$$
0=f^{*}\left(w_{i}^{*}\right)(v)=w_{i}^{*}(f(v))
$$

for arbitrary $v \in V$. It follows that each dual basis element is mapped to 0 and therefore $f^{*}=0$. This completes the proof of injectivity. Moreover, the dimensions of the vector spaces are equal so the map is necessarily an isomorphism.

Problem 1.2. Consider a linear map $f: V \rightarrow V$ and an isomorphism $\varphi: V \simeq W$.

1. Prove that f and $\varphi \circ f \circ \varphi^{-1}: W \rightarrow W$ have the same eigenvalues.
2. What is the relationship between eigenvectors for f and eigenvectors for $\varphi \circ f \circ \varphi^{-1}$.

Solution. I will prove these parts together, as the one falls out from the other. Suppose $v \in V$ is an eigenvector of f with eigenvalue λ. Then consider

$$
\varphi \circ f \circ \varphi^{-1}(\varphi(v))=\varphi \circ f(v)=\lambda \varphi(v)
$$

and thus $\varphi(v)$ is an eigenvector of $\varphi \circ f \circ \varphi^{-1}$ with eigenvalue λ. This logic has a slight flaw if $\varphi(v)=0$, but in that case $v=0$ by injectivity of φ and thus v was not an eigenvector.

This tells us that the eigenvalues of f are a subset of the eigenvalues of $\varphi \circ f \circ \varphi^{-1}$. Similarly, suppose w is an eigenvector of $\varphi \circ f \circ \varphi^{-1}$ with eigenvalue λ. Then $w=\varphi(v)$ for some fixed $v \in V$ (by surjectivity of φ) and we see that

$$
\begin{array}{r}
\lambda w=\varphi \circ f \circ \varphi^{-1} \varphi(v)=\varphi \circ f(v) \\
\Rightarrow \lambda \varphi^{-1}(w)=f(v) \\
\Rightarrow \lambda v=f(v)
\end{array}
$$

This completes the proof that the eigenvalues are shared are gives the second relationship between eigenvectors.

Problem 1.3. Show that a degree m polynomial p has m distinct zeroes exactly if p and its derivative p^{\prime} have no zeroes in common.

Solution. Suppose p and p^{\prime} have a root in common. Then we may write

$$
\begin{aligned}
p(x) & =(x-a) r_{1}(x) \\
p^{\prime}(x) & =(x-a) r_{2}(x)
\end{aligned}
$$

for some polynomials r_{1} and r_{2}. Then we calculate

$$
p^{\prime}(x)=(x-a) r_{1}^{\prime}(x)+r_{1}(x)=(x-a) r_{2}(x)
$$

From this form we see that $(x-a)$ divides r_{1} and therefore a is at least a double root of p.
For the other direction, suppose that p has a double root, that is

$$
p=(x-a)^{2} r(x)
$$

for some polynomial r. Then we calculate the derivative:

$$
\begin{equation*}
p^{\prime}=2(x-a) r(x)+(x-a)^{2} r^{\prime}(x) \tag{TA}
\end{equation*}
$$

and thus a is a root of p^{\prime} and p has a root in common with p^{\prime}. This completes the proof.

2 For submission to Davis Lazowski

Problem 2.1. Suppose p is a complex polynomial. Show that $q=p \cdot \bar{p}$ is a polynomial with real coefficients.
Solution. Certainly, $q(x)=p(x) \bar{p}(x)$ is a real number for all real x. In particular, $q^{(j)}(0) \in \mathbb{R} \forall j$.
Therefore $\varphi_{j}(q): \varphi_{j}(q)=\frac{q^{(j)(0)}}{j!} \in \mathcal{L}\left(P^{n}, \mathbb{R}\right)$, where $n=\operatorname{deg} q$. In particular, by problem 4.1 this means that the dual vector $q^{*} \in\left(P^{n}\right)^{*}$ where $\left(P^{n}\right)^{*}$ is over the field \mathbb{R} because it is in the span of the basis vectors.

Therefore, $q \in P^{n}$ as a vector space over the reals. Therefore, $q=\sum_{j=1}^{n} \lambda_{j} x^{j}$, where $\lambda_{j} \in \mathbb{R}$, therefore done.

Problem 2.2. Consider a complex vector space V, a map $f: V \rightarrow V$, and a basis of V in which f is expressed by a matrix M with all real entries. Show that if λ is an eigenvalue of f, then so is $\bar{\lambda}$.
Solution. Let $\lambda w=f w$. In matrix form, with the basis $V, \lambda\left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right)=A\left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right)$. Since A has all real entries, $A=\bar{A}$.

Therefore

$$
\begin{align*}
&\left.\overline{\lambda\left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right.}\right)=A\left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right) \\
& \Longrightarrow \bar{\lambda}\left(\sum_{j=1}^{n} \overline{\alpha_{j}} v_{j}\right)=\bar{A}\left(\sum_{j=1}^{n} \overline{\alpha_{j}} v_{j}\right) \\
& \Longrightarrow \bar{\lambda}\left(\sum_{j=1}^{n} \overline{\alpha_{j}} v_{j}\right)=A\left(\sum_{j=1}^{n} \overline{\alpha_{j}} v_{j}\right) \\
& \Longrightarrow \bar{\lambda}\left(\sum_{j=1}^{n} \overline{\alpha_{j}} v_{j}\right)=f\left(\sum_{j=1}^{n} \overline{\alpha_{j}} v_{j}\right) \tag{DL}
\end{align*}
$$

Problem 2.3. Suppose that V is finite-dimensional and let $f, g: V \rightarrow V$ be linear functions. Show that $f \circ g$ and $g \circ f$ have the same eigenvalues.

Solution. Let $[f \circ g] w=\lambda w$. Then $g \circ[f \circ g] w=g(\lambda w)=\lambda g(w)$. So that, by associativity of function composition, $g \circ f(g w)=\lambda g w$.

Therefore $g w$ is an eigenvector of $g \circ f$, with same eigenvalue. Symmetrically

$$
\begin{array}{r}
{[g \circ f] v=\alpha v} \\
\Longrightarrow f[g \circ f] v=f(\alpha v) \\
\Longrightarrow[f \circ g](f v)=\alpha(f v) \tag{DL}
\end{array}
$$

So that $f v$ is an eigenvector of $f \circ g$ with eigenvalue also α.

3 For submission to Handong Park

Problem 3.1. Suppose that $U_{1}, \ldots, U_{n} \leq V$ are invariant subspaces under an operator $f: V \rightarrow V$. Show that their intersection $U_{1} \cap \cdots \cap U_{n}$ and their subspace sum $U_{1}+\cdots+U_{n}$ are invariant under f as well.

Solution. We prove each assertion in turn:

1. A vector $v \in U_{1} \cap \cdots \cap U_{n}$ is simultaneously a member of each U_{j}. It follows that $f(v)$ is simultaneously a member of each U_{j}, since each U_{j} is invariant under f. This is the same as saying $f(v) \in U_{1} \cap \cdots \cap U_{n}$, so that $U_{1} \cap \cdots \cap U_{n}$ is invariant under f as well.
2. A vector $v \in U_{1}+\cdots+U_{n}$ admits (possibly nonunique) expression as $v=u_{1}+\cdots+u_{n}$ for $u_{j} \in U_{j}$. Applying f to this decomposition gives

$$
f(v)=f\left(u_{1}+\cdots+u_{n}\right)=f\left(u_{1}\right)+\cdots+f\left(u_{n}\right)=u_{1}^{\prime}+\cdots+u_{n}^{\prime},
$$

where we have used that $f\left(u_{j}\right)=u_{j}^{\prime}$ is again a member of U_{j}. From this, it follows that $f(v) \in$ $U_{1}+\cdots+U_{n}$, so that $U_{1}+\cdots+U_{n}$ is invariant under f.

Problem 3.2. Find all eigenvalues and eigenvectors of the backward shift operator $f: K^{\infty} \rightarrow K^{\infty}$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right) .
$$

Solution. The eigenvector equation for this operator is

$$
\lambda \cdot\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right) .
$$

Expanding this into a system of equations, we have

$$
\lambda x_{1}=x_{2}, \quad \lambda x_{2}=x_{3}, \quad \lambda x_{3}=x_{4}, \quad \ldots
$$

We see that for any choice of x_{1} and λ, the rest of the x_{j} are uniquely determined. It follows that each eigenspace $E(k)$ is 1-dimensional, for any choice of $k \in K$.
(ECP)
Problem 3.3. Suppose f is a nonzero polynomial, and let U be the subspace of all polynomials P defined by

$$
U=\{f \cdot g \mid g \text { a polynomial }\} .
$$

Show that $\operatorname{dim} P / U=\operatorname{deg} f$, and exhibit a basis of P / U.
Solution. Write

$$
f=a_{n} x^{n}+\cdots+a_{1} x+a_{0}
$$

for $a_{n} \neq 0$, and write $\pi: P \rightarrow P / U$ for the quotient. The key observation is that, after projection along π, we have

$$
\begin{aligned}
\pi\left(a_{n} x^{n}+\cdots+a_{1} x+a_{0}\right) & =\pi(0) \\
\pi\left(a_{n} x^{n}\right)+\pi\left(a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right) & =0 \\
\pi\left(a_{n} x^{n}\right) & =-\pi\left(a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right) .
\end{aligned}
$$

In fact, $f(x) \cdot x^{m}$ is also a member of U, so

$$
\pi\left(a_{n} x^{n+m}\right)=-\pi\left(a_{n-1} x^{n+m-1}+\cdots+a_{1} x^{m+1}+a_{0} x^{m}\right)
$$

Induction shows that any polynomial of degree at least n can be rewritten as a polynomial of degree at most $n-1$, so that $\left(\pi(1), \pi(x), \ldots, \pi\left(x^{n-1}\right)\right)$ forms a spanning set of P / U. If there were a linear dependence among these elements, then we would have

$$
\begin{aligned}
k_{0} \pi(1)+k_{1} \pi(x)+\cdots+k_{n-1} \pi\left(x^{n-1}\right) & =0 \\
\pi\left(k_{0}+k_{1} x+\cdots+k_{n-1} x^{n-1}\right) & =0
\end{aligned}
$$

so that $k_{0}+k_{1} x+\cdots+k_{n-1} x^{n-1} \in \operatorname{ker} \pi=U$. This cannot be: because every member of U is formed as $f \cdot g$, the degree of every member of U satisfies

$$
\operatorname{deg}(f \cdot g)=\operatorname{deg} f+\operatorname{deg} g=n+\operatorname{deg} g \geq n
$$

As this list spans and is linearly independent, it forms a basis. The length of the list shows

$$
\begin{equation*}
\operatorname{dim} P / U=n \tag{ECP}
\end{equation*}
$$

Solution. Another way in which we can understand the proof and the result is to think of P / U in this case as an affine space given by the set of all possible polynomial remainders $r(x)$ when we divide any possible polynomial in P by the fixed polynomial $f(x)$. What our proof from above aims to do is to formalize the idea that given any polynomial $p(x)$, it can be written as (via long division of polynomials):

$$
p(x)=r(x)+f(x) \cdot g(x), \text { where } f(x) \cdot g(x) \in U
$$

In other words, whenever we have a polynomial that is of degree n or greater, it can be "divided" into a multiple of f by some polynomial g added to some remainder polynomial r of degree strictly less than the degree of f. In P / U, we only care about the remainder $r(x)$ and not the portion that is a multiple of $f(x) \in U$, since any multiples of $f(x)$ provide no new unique polynomials when we mod out by U. So in order to have a basis for P / U, all we need to do is have a basis that generates the possible remainders $r(x)$ of degree $n-1$ down to 0 , and $1, x, x^{2}, \ldots, x^{n-1}$ is one such simple basis, which we can demonstrate to be both linearly independent and generating.

Problem 3.4. Show that every real polynomial of odd degree has a zero.
Solution. Axler assures us that every real polynomial factors essentially uniquely as a product of a scalar, some linear factors, and some irreducible quadratic factors. If the factorization of our real polynomial f consisted solely of quadratic factors, its expansion would be of even degree. Instead, we know that f has odd degree, so that there must be at least one linear factor, say $(x-b)$. It then follows that $f(b)=0$. (ECP)

Solution. Alternatively, we showed in class that eventually the leading term of a polynomial dominates the rest of the expression. It follows that for large positive values, the polynomial f takes the sign of its leading coefficient a_{n}, and for large negative values, the polynomial f takes the sign of $-a_{n}$. Since $a_{n} \neq 0$, these are opposite signs, and the Intermediate Value Theorem guarantees the existence of a zero.
(ECP)

4 For submission to Rohil Prasad

Problem 4.1. Show that the dual basis of $\left(1, x, x^{2}, \ldots, x^{n}\right)$ of P_{n} is $\varphi_{0}, \ldots, \varphi_{n}$ defined by

$$
\varphi_{j}(f)=\frac{f^{(j)}(0)}{j!}
$$

Solution. It suffices to show that $\varphi_{j}\left(x^{j}\right)=1$ and $\varphi_{j}\left(x^{i}\right)=0$ for every $i \neq j$.
If $i<j$, then $\left(x^{i}\right)^{(j)}=0$ and so $\varphi_{j}\left(x^{i}\right)=0$.
If $i=j$, then $\left(x^{j}\right)^{(j)}=j!$ and so $\varphi_{j}\left(x^{j}\right)=j!/ j!=1$.
If $i>j$, then $\left(x^{i}\right)^{(j)}=i(i-1) \ldots(i-j+1) x^{i-j}$, which is equal to 0 when evaluated at 0 . Therefore, $\varphi_{j}\left(x^{j}\right)=0$ as well.

Problem 4.2. Consider the differentiation operator on the vector space P of all polynomials:

$$
\frac{d}{d x}: P \rightarrow P
$$

Calculate all the eigenvectors and eigenvalues of P.
Solution. We will show that the only eigenvalue is 0 with corresponding eigenvector 1 (or any $\lambda \in K$).
The fact that these are an eigenvalue/eigenvector is immediate by the definition of differentiation.
Now we will show no polynomial of degree $d \geq 1$ can be an eigenvector. Assume for the sake of contradiction that $p(x)=\sum_{i=0}^{d} c_{i} x^{i}$ with $c_{d} \neq 0$ is an eigenvector of the differentiation operator with eigenvalue λ. By definition, $d p / d x=\sum_{i=0}^{d-1}(i+1) c_{i+1} x^{i}$.

Comparing the degree d coefficients of λp and $d p / d x$, we find that $\lambda c_{d}=0$. Since $c_{d} \neq 0$, we must have $\lambda=0$.

However, if $\lambda=0$, then $d p / d x=\lambda p=0$. The degree $d-1$ coefficient of $d p / d x$ is $d c_{d} \neq 0$, so we arrive at a contradiction and p is not an eigenvector of the differentiation operator.

Problem 4.3. Let p be a complex polynomial of degree m and suppose that there are distinct $x_{0}, \ldots, x_{m} \in \mathbb{R}$ with $p\left(x_{j}\right) \in \mathbb{R}$ for all j. Prove that p is actually a real polynomial.
Solution. We will prove this by induction on m.
In this base case, let $m=0$. Then p is a constant $c \in \mathbb{C}$, so if $p\left(x_{0}\right) \in \mathbb{R}$ then we must have $c=p\left(x_{0}\right) \in \mathbb{R}$.
Now assume that this holds for polynomials of degree $m-1$. Let p be a complex polynomial of degree m such that $x_{0}, \ldots, x_{m} \in \mathbb{R}$ satisfy $p\left(x_{j}\right) \in \mathbb{R}$ for all j.

Since $p\left(x_{m}\right) \in \mathbb{R}$, we have p has real coefficients if and only if $p-p\left(x_{m}\right)$ has real coefficients. By definition, $p-p\left(x_{m}\right)$ has x_{m} as a root, so it factors as a product $\left(x-x_{m}\right) q$, where q is a complex polynomial of degree $m-1$.

Plugging in x_{j} for $j<m$, we find that $\left(x_{j}-x_{m}\right) q\left(x_{j}\right) \in \mathbb{R}$. Since $x_{j}-x_{m} \in \mathbb{R}$, it follows that $q\left(x_{j}\right) \in \mathbb{R}$. Since q has degree $m-1$ and x_{0}, \ldots, x_{m-1} satisfy $q\left(x_{j}\right) \in \mathbb{R}$ for every j, by our inductive hypothesis q is real and therefore $p-p\left(x_{m}\right)$ is real, which implies p is real.

