Homework \#4

Math 25a
Due: October 5, 2016

Guidelines:

- You must type up your solutions to this assignment in $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$. There's a template available on the course website.
- This homework is divided into four parts. You will turn each part in to a separate CA's mailbox on the second floor of the science center. So, be sure to do the parts on separate pieces of paper.
- If your submission to any particular CA takes multiple pages, then staple them together. If you don't own one (though you should), a stapler is available in the Cabot Library in the Science Center.
- Be sure to put your name at the top of each part, so that we know who to score!
- If you collaborate with other students, please announce that somewhere (ideally: next to the problems you collaborated on) so that we don't get suspicious of hyper-similar answers.

Failure to meet these guidelines may result in loss of points. (Staple your pages!)

1 For submission to Thayer Anderson

Problem 1.1. Suppose that V is a vector space over a field of scalars K with $\operatorname{dim} V=1$. Show that each element $f \in \mathcal{L}(V, V)$ has the form $f(v)=\lambda_{f} \cdot v$ for some scalar λ_{f} (which depends on f but not on v). Conclude from this that there is an isomorphism of vector spaces

$$
\mathcal{L}(V, V) \xlongequal{\rightrightarrows} K
$$

which does not depend upon choosing a basis for V.
Problem 1.2. Suppose that $f: V \rightarrow W$ and $g: W \rightarrow X$ are linear maps.

1. Show that $\operatorname{dim} \operatorname{ker}(g \circ f) \leq \operatorname{dim} \operatorname{ker} f+\operatorname{dim} \operatorname{ker} g$.
2. Show that $\operatorname{dimim}(g \circ f) \leq \min \{\operatorname{dimim} f, \operatorname{dimim} g\}$.

Problem 1.3. Let $f, g: V \rightarrow W$ be two linear maps.

1. Suppose that W is finite dimensional. Show that $\operatorname{ker} f \subseteq \operatorname{ker} g$ if and only if there exists a third linear map $h: W \rightarrow W$ satisfying $g=h \circ f$.
2. Suppose that V is finite dimensional. Show that $\operatorname{im} f \subseteq \operatorname{im} g$ if and only if there exists a third linear map $h: V \rightarrow V$ satisfying $f=g \circ h$.

2 For submission to Davis Lazowski

Problem 2.1. Actually check the distributivity of linear maps. Suppose you are given linear maps

$$
f, g: V \rightarrow W
$$

and a third linear map

$$
h: W \rightarrow X
$$

Demonstrate $h(f+g)=(h f)+(h g)$.
Problem 2.2. Let $f: V \rightarrow W$ be a linear map and suppose that V is finite dimensional. Show that there exists a subspace $U \leq V$ with $U \oplus \operatorname{ker} f=V$ and $f(U)=\operatorname{im} V$.

Problem 2.3. Suppose that $f: V \rightarrow W$ is a linear function of vector spaces V and W over a scalar field K, and let $\left(w_{1}, \ldots, w_{n}\right)$ be a basis for $\operatorname{im} f$. Show that there exist $\varphi_{1}, \ldots, \varphi_{n} \in \mathcal{L}(V, K)$ such that

$$
f(v)=\varphi_{1}(v) \cdot w_{1}+\cdots+\varphi_{n}(v) \cdot w_{n}
$$

Problem 2.4. Prove that the intersection of any finite collection of affine subsets of V is either the empty set or yet another affine subset.

3 For submission to Handong Park

Your task is to reinvent Gaussian elimination, since this topic is not covered in the book.
Problem 3.1. ${ }^{1}$ Gaussian elimination involves three elementary row operations performed on the entries of a matrix:

- Swap the $j^{\text {th }}$ and $k^{\text {th }}$ rows.
- For indices $j \neq k$ and some scalar c, take the $k^{\text {th }}$ row, scale all its entries by c, and add the result to the $j^{\text {th }}$ row.
- For an index j and a nonzero scalar c, scale the $j^{\text {th }}$ row by c.

Our first goal is to understand some features of these row operations.

1. Each of these operations can be encoded by matrices $S(j, k), A(j, k, c)$, and $M(j, c)$ so that $S(j, k) \cdot X$, $A(j, k, c) \cdot X$, and $M(j, c) \cdot X$ are the respective results of the operations applied to a matrix X. These matrices $S(j, k), A(j, k, c)$, and $M(j, c)$ are called elementary matrices. Find descriptions of the elementary matrices. (This could mean formulas, or English descriptions, or...)
2. Check that the elementary matrices are all invertible.
3. You can think of $S(j, k), A(j, k, c)$, and $M(j, c)$ as describing a change of basis. If X encodes the behavior of a linear map $f: V \rightarrow W$ on a basis $\left(w_{1}, \ldots, w_{n}\right)$ of W, then in what bases do $S(j, k) \cdot X$, $A(j, k, c) \cdot X$, and $M(j, c) \cdot X$ encode f ?

Problem 3.2. A matrix X is said to be upper-triangular when the entries satisfy $X_{i j}=0$ whenever $i>j$. (When written as a block of numbers, all the entries below the main diagonal are zero.) Describe an algorithm which modifies a matrix to be upper-triangular using the elementary row operations. (Be sure to argue that your algorithm actually succeeds at this goal.) (Hint: work one column at a time.)

[^0]Problem 3.3. 1. Problem 3.2 can be used to calculate the inverses of matrices. Suppose that your algorithm row-reduces a matrix X to the identity matrix, i.e.,

$$
E_{n} \cdots E_{2} \cdot E_{1} \cdot X=I
$$

for some sequence of elementary matrices $\left(E_{j}\right)$. Supposing further that X is invertible, i.e.,

$$
X \cdot X^{-1}=I
$$

for other some matrix X^{-1}, solve for X^{-1} in terms of the elementary matrices $\left(E_{j}\right)$.
2. Use your algorithm to calculate the matrix inverse of

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) .
$$

(If necessary, modify your algorithm above to handle this case - that is, make sure it gives you the identity matrix rather than merely an upper triangular matrix.)

Problem 3.4. 1. Describe the effect of right-multiplying some matrix X by an elementary matrix.
2. Using both the original elementary row operations and the operations uncovered in the previous part, devise a variation on your answer to Problem 3.2 that gives an algorithm that rewrites any matrix as a diagonal matrix. (Again, be sure to argue that your algorithm actually succeeds at this goal.)
3. Conclude that for any linear map $f: V \rightarrow W$ between finite dimensional vector spaces, we can find bases of V and W such that the resulting matrix X expressing f is diagonal.
4. Conclude rank-nullity from this form X for f :

$$
\operatorname{dim} V=\operatorname{dimim} f+\operatorname{dim} \operatorname{ker} f
$$

4 For submission to Rohil Prasad

Problem 4.1. Suppose that $x, y \in V$ are vectors in a vector space V and $U, W \leq V$ are subspaces of V, altogether satisfying the relation

$$
x+U=y+W
$$

Show that $U=W$.
Problem 4.2. Prove that a nonempty subset $A \subseteq V$ of a vector space V is an affine subset if and only if for all $v, w \in A$ and all $\lambda \in K$ it is also the case that

$$
\lambda \cdot v+(1-\lambda) \cdot w \in A
$$

(Side remark: for $K=\mathbb{R}$ and $0 \leq \lambda \leq 1$, this property is called convexity.)
Problem 4.3. Suppose that $U \leq V$ is a subspace such that the quotient space V / U is finite dimensional. Show that V is isomorphic to $U \times(V / U)$.

[^0]: ${ }^{1}$ This problem originally flipped left- and right-multiplication. Hopefully it's straight now.

