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1 For submission to Thayer Anderson

Problem 1.1. Suppose that V is a vector space over a field of scalars K with dimV = 1. Show that each
element f ∈ L(V, V ) has the form f(v) = λf · v for some scalar λf (which depends on f but not on v).
Conclude from this that there is an isomorphism of vector spaces

L(V, V ) ' K

which does not depend upon choosing a basis for V .

Solution. The set L(V, V ) has vector-space structure over K and dimension (dimV )2 = 1. The identity map,
idV is a linear map in L(V, V ). It follows that {idV } is a basis for L(V, V ). As a basis, this set is spanning,
and thus if f ∈ L(V, V ) then f = λf · idV for some λ ∈ K. It follows that f(v) = λf · idV (v) = λf · v for all
v ∈ V .

Let the map ϕ : L(V, V ) → K be defined by its action on a basis: idV 7→ 1. We see that ϕ(f) = λf .
We must prove this map is linear, surjective, and injective. To show linearity, first consider f + g for linear
maps f and g.

(f + g)(v) = f(v) + g(v) = λf (v) + λg(v) = (λf + λg)(v)

⇒ λf+g = λf + λg

Then we see

ϕ(f + g) = λf+g = λf + λg.

Similarly for scalar multiplication, consider the map c · f for c ∈ K and f ∈ L(V, V ). Then

(c · f)(v) = c · f(v) = cλf · v = (cλf )v

Thus

ϕ(cf) = cλf .

We conclude that ϕ is linear and since it maps a basis to a basis it is an isomorphism. Alternatively, we can
see that ϕ(f) = 0 only if f = 0. Then it follows that ϕ is a bijection. (TA)

Solution. Here’s an alterative solution. Take some non-zero vector v ∈ V . Then {v} forms a basis for V .
Since the vector f(v) ∈ V it follows that f(v) ∈ span({v}). Thus f(v) = λv,f · v. Suppose that λv′,f 6= λv, f
for two non-zero vectors v and v′. Then, by the fact that v spans, we can say v′ = c · v. We have

λv′,fv
′ = f(v′) = f(cv) = cf(v) = cλv,fv = λv,fcv = λv,fv

′

We conclude that λv′,f = λv,f and thus the λf is determined by f and is basis independent. In addition, the
definition of f(v) = λf (v) is consistent at v = 0. Then we prove the existence of the desired isomorphism as
in previous solution. (TA)
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Problem 1.2. Suppose that f : V →W and g : W → X are linear maps

1. Show that dim ker(g ◦ f) ≤ dim ker f + dim ker g.

2. Show that dim im(g ◦ f) ≤ min{dim im f, dim im g}.

Solution. 1. Consider the map h := f |ker(g◦f) : ker(g ◦ f) → W . Since kernels are subspaces, this map
makes sense. Apply the fundamental theorem for linear maps to h:

dim ker(g ◦ f) = dim kerh+ dim imh

Note that kerh ⊂ ker f and so dim kerh ≤ dim ker f . Similarly, suppose w ∈ imh. Then w =
h(v) = f(v) for some v ∈ ker(g ◦ f). Therefore g(w) = (g ◦ f)(v) = 0. Thus w ∈ ker g. Therefore,
dim imh ≤ dim ker g. Combining these inequalities, we have

dim ker(g ◦ f) ≤ dim ker f + dim ker g.

This completes the proof.

2. To prove this claim, I will prove that dim im(g ◦ f) ≤ dim im g and dim im(g ◦ f) ≤ dim im f . For the
first inequality, note that im(g ◦ f) ⊂ im g and thus the inequality follows.

For the second inequality, note that im f is a subspace of W . Thus we can consider the linear map
h := g|im f . Applying the fundamental theorem for linear maps,

dim im f = dim imh+ dim kerh

I claim that imh = im(g ◦f). To prove this, I prove both inclusions. Suppose x ∈ imh. Then x = g(w)
for some w ∈ im f . Then we see that w = f(v) for some v ∈ V . Thus x = g(f(v)) and therefore
x ∈ im(g ◦ f). For the other inclusion, suppose that x ∈ im(g ◦ f). Then x = g(f(v)) for some v ∈ V .
Then x = g(w) where w = f(v) ∈ im f . This proves the other inclusion. Thus we have proven that
imh = im(g ◦ f). Now we have the following:

dim im f − dim kerh = dim im(g ◦ f)

Since dim kerh ≥ 0 it follows that

dim im f ≥ dim im(g ◦ f)

This second inequality completes the proof. (TA)

Problem 1.3. Let f, g : V →W be two linear maps.

1. Suppose that W is finite dimensional. Show that ker f ⊂ ker g if and only if there exists a third linear
map h : W →W satisfying g = h ◦ f .

2. Suppose that V is finite dimensional. Show that im f ⊂ im g if and only if there exists a third linear
map h : V → V satisfying f = g ◦ h.

Solution.

Lemma 1. Suppose X is a K vector-space such that dimX is finite. Suppose that U ≤ X is a subspace.
There exists a linear map ϕ : X → U such that ϕ|U = idU .

Note. One might call ϕ the projection map onto the subspace U . You can clearly see that ϕ2 = ϕ. We will
deal a lot with these projection maps in the future, so it may be worthwhile to study their construction.
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Proof. Take a basis u1, . . . un for U . Extend this to S = {u1, . . . , un, x1, . . . xm}, a basis for X. Then let
ϕ : X → U be defined as follows:

ϕ(a1u1 + · · ·+ anun + an+1x1 + · · ·+ an+mxm) = a1u1 + · · ·+ anun.

We see that this defines a single, well-defined, value for ϕ on all x ∈ X because S is a basis. To prove
linearity, let

x = a1u1 + · · ·+ anun + an+1x1 + · · ·+ an+mxm

cy = ca′1u1 + · · ·+ ca′nun + ca′n+1x1 + · · ·+ ca′n+mxm

for arbitrary x, y ∈ X and c ∈ K. Then consider

ϕ(a1u1 + · · ·+ anun + an+1x1 + · · ·+ an+mxm

+ca′1u1 + · · ·+ ca′nun + ca′n+1x1 + · · ·+ ca′n+mxm)

= (a1 + ca′1)u1 + · · ·+ (an + ca′n)un = ϕ(x) + cϕ(y).

This proves that ϕ is a linear map. By inspection, ϕ|U = idU .

1. First, the forwards direction. Suppose there exists a linear map h : W → W satisfying g = h ◦ f .
Suppose that v ∈ ker f . Then g(v) = h(f(v)) = h(0) = 0. Therefore v ∈ ker g. It follows that
ker f ⊂ ker g.

For the reverse direction, I present two proofs. One is very “algebra-y” and the other is very “linear-
algebra-y”. I think the first is more elegant, but the second has better intutions for you at this point.
Take whichever you prefer.

Proof. Suppose that ker f ⊂ ker g. Let ϕ : W → im f be a linear map whose existence is given by
Lemma 1. Then let π : V → V/ ker f be the canonical quotient map. Then let f̃ = π ◦f . We note that
f̃ : V/ ker f → W is an isomorphism. (If this construction is confusing to you, refer to Axler 3.91).
Then the following diagram commutes:

V
f−−−−→ Wyπ yϕ

V/ ker f
f̃−1

←−−−− im f

Namely, I claim f̃−1 ◦ϕ◦ f = π. This is in fact a fairly trivial claim as f̃ = π ◦ f and ϕ◦ f = f because
f : V → W embeds V in W as im f . Let g̃ : V/ ker f → W be the map defined by g̃(v + ker f) =
g(v+ker f) = g(v). Such a map is well defined because ker f ⊂ ker g, as represented in the last equality.
This is essential so it bears repeating. If x, y ∈ v + ker f then x − y ∈ ker f ⇒ x − y ∈ ker g. Then
g(x)− g(y) = g(x− y) = 0. Thus g(x) = g(y). So the map is well defined on the affine subsets.

Then we see that g̃((v + cv′) + ker f) = g((v + cv′) + ker f) = g(v + cv′) = g(v) + cg(v′). Thus g̃ is a
linear map. We see by inspection that g = g̃ ◦ π.

Then let h = g̃ ◦ f̃−1 ◦ ϕ. As a composition of linear maps, h is a linear map. It only remains to be
shown that h ◦ f = g, but this was the point of the commutative diagram!

h ◦ f = g̃ ◦ f̃−1 ◦ ϕ ◦ f = g̃ ◦ π = g

Proof. Now for the second proof. This time with bases and more explicit constructions. We are
given that W is finite dimensional. Construct a basis for im f . Such a basis has the form S =

3



{f(v1), f(v2), . . . , f(vn)} for vi ∈ V . (As a basis for im f , each basis element is in the image). Extend
S to a basis for W as follows S′ = {f(v1), . . . , f(vn), w1, . . . , wm}. Then let ϕ : W → V be defined as

ϕ(a1f(v1) + · · ·+ anf(vn) + an+1w1 + · · ·+ an+mwm) = a1v1 + · · ·+ anvn

To show linearity of this map, suppose we have w and w′ arbitrary as follows:

w = a1f(v1) + · · ·+ anf(vn) + an+1w1 + · · ·+ an+mwm

w′ = b1f(v1) + · · ·+ bnf(vn) + bn+1w1 + · · ·+ bn+mwm

Then we have, for c ∈ K arbitrary

ϕ(w + cw′) =ϕ((a1 + cb1)f(v1) + · · ·+ (an + cbn)f(vn)

+ (an+1 + cbn+1)w1 + · · ·+ (an+m + cbn+m)wm)

=(a1 + cb1)v1 + · · ·+ (an + cbn)vn = ϕ(w) + cϕ(w′)

Thus ϕ is a linear map. Then let h : W → W be defined by h = g ◦ ϕ. As a composition of linear
maps, h is a linear map. Then I claim h◦ f = g. Consider ϕ◦ f . I claim that ϕ◦ f(v) ∈ v+ ker f . This
must be the case as f ◦ ϕ(w) = w for w ∈ im f by inspection. Then, since ker f ⊂ ker g it follows that

g ◦ ϕ ◦ f(v) = g(v′)

for v′ ∈ v + ker f . Thus

g(v′) = g(v)

⇒ g ◦ ϕ ◦ f = g

This completes the latter proof.

2. For the second part, we proceed very similarly, and I will only present one of the proof techniques (but
note that a similar style proof could be constructed with another commutative diagram).

For the forwards direction, suppose that there exists a linear map h : V → V satisfying f = g ◦ h.
Then for w ∈ im f there exists a v ∈ V such that g ◦ h(v) = f(v) = w. But h(v) is a vector like any
other, and is the preimage of w under g. Thus the claim is proven.

For the reverse direction, suppose that im f ⊂ im g. Let w1, . . . , wn be a basis for im f (finite dimen-
sional because V is finite dimensional). Then extend this to a basis for V by adding wn+1, . . . , wn+m.
We see that wi = f(vi) for 1 ≤ i ≤ n and wi = g(v′i) for 1 ≤ i ≤ n. Note that here we have applied
the crucial assumption that im f ⊂ im g.

The vectors v1, . . . , vn span a subspace U ≤ V . Then construct ϕ : V → U ↪→ V (the hooked arrow just
means “naturally included in”), the projection map from Lemma ??. Then define the map h : V → V
by its action on the basis of V :

h(vi) =

{
v′i 1 ≤ i ≤ n
0 else

This map is linear by analogy to the previous part. I claim that f = g ◦ h. Suppose v ∈ V arbitrary
such that f(v) = a1f(v1) + · · ·+ anf(vn). Then we consider g ◦ h(v):

g ◦ h(v) = g(a1v
′
1 + · · ·+ anv

′
n) = a1w1 + · · ·+ anwn

= a1f(v1) + · · ·+ anf(vn) = f(v).

This completes the proof. (TA)
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2 For submission to Davis Lazowski

Problem 2.1. Actually check the distributivity of linear maps. Suppose you are given linear maps

f, g : V →W

and a third linear map
h : W → X.

Demonstrate h(f + g) = (hf) + (hg).

Solution. It’s enough to show that ∀x : h(f + g)(x) = [(hf)(x) + hg(x)].
But (f + g)(x) is just a vector, and (f + g)(x) = f(x) + g(x), which is also just a vector. So by linearity:

h((f + g)(x))

= h(f(x) + g(x))

= h(f(x)) + h(g(x))

= [hf ](x) + [hg](x) (DL)

Problem 2.2. Let f : V → W be a linear map and suppose that V is finite dimensional. Show that there
exists a subspace U ≤ V with U ⊕ ker f = V and f(U) = imV .

Solution. ker f is a subspace. So by the algorithm for finding the complement of a subspace discussed in
class, there exists U : ker f ⊕ U = V . So it’s enough to show that f(U) = imV.

Let i ∈ imV. Then there exists v ∈ V : f(v) = i. By the direct sum relation, there are k ∈ ker f, u ∈ U
such that v = k + u. Also, f(k) = 0 by definition of the kernel. So

f(u) = f(v − k) = f(v)− f(k) = f(v)− 0 = f(v)

So f(U) ⊃ im(V). But also f(U) ⊂ im(V) by definition of the image. Therefore f(U) = im(V) (DL)

Problem 2.3. Suppose that f : V → W is a linear function of vector spaces V and W over a scalar field
K, and let (w1, . . . , wn) be a basis for im f . Show that there exist ϕ1, . . . , ϕn ∈ L(V,K) such that

f(v) = ϕ1(v) · w1 + · · ·+ ϕn(v) · wn.

Solution. Define πj(w) as the coefficent of wj when w is written in terms of the basis w1...wn, so that
πj : W → K. By linear independence of the basis, this definition is well-defined.

Claim. πj is linear.
Proof. Let w =

∑n
i=1 αiwi, u =

∑n
i=1 βiwi.

Then πj(w) = αj , πj(u) = βj . Also, w + λu =
∑n
i=1(αi + λβi)wi.

Therefore,
πj(w + λu) = αj + λβj = πj(w) + λπj(u)

So πj ∈ L(W,K). Therefore, πj ◦ f ∈ L(V,K).
Also, by definition of the πj ,

f(v) =

n∑
j=1

[πj ◦ f ](v)wj (DL)

Problem 2.4. Prove that the intersection of any finite collection of affine subsets of V is either the empty
set or yet another affine subset.
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Solution. Recall that an affine subset of V is v+U , with v ∈ V and U ⊂ V a subspace. If W is a complement
subspace of W , ∀v + U∃w ∈W : w + U = v + U .

This is because v = w̃ + ũ, with w̃ ∈W, ũ ∈ U . Clearly ũ ∈ U , so can be dropped, so w̃ + U = v + U .
Recall also that the solution space of f(v) = w is always an affine subset of V or empty. Let’s show the

reverse implication, that every affine subset of V is also the solution space of an equation.
Let U a subspace, u1...um a basis of this subspace. Extend this to a basis u1...um, r1...rn−m of V . Write

x ∈ V as x =
∑m
j=1 αjuj +

∑n−m
i=1 βiri.

Define πR ∈ L(V, V ) as πR(x) =
∑n−m
j=1 βiri. Then kerπR = U . The equation πR(u) = w, with w ∈ W ,

then clearly has solution space w + U = v + U .
Let vi + Ui be some collection of affine subspaces. Denote their associated equations as πRi

(u) = wi.
Observe that (vi +Ui)∩ (vi′ +Ui′) is just the set of u that simultaneously solve the associated equations:

πRi(u) = wi

πRi′ (u) = wi′

And a simlar relation holds true for the intersection of any collection of affine subspaces.
Let (vi + Ui), i ∈ I a collection of affine subspaces. Define π ∈ L(V, V I) by π(u) = (πR1

(u), πR2
(u)....)

Then the equation
π(u) = (w1, w2....)

Has u as a solution if any only if it solves all the equations πRj
(u) = wj . So u ∈

⋂
i∈I(vi + Ui). But if

u ∈
⋂
i∈I(vi + Ui), then u solves each equation πRj

(u) = wj , so solves π(u) = (w1, w2...). But the solution
space of π(u) = (w1, w2...) is an affine subset or empty, therefore done. (DL)

3 For submission to Handong Park

Your task is to reinvent Gaussian elimination, since this topic is not covered in the book.

Problem 3.1. Gaussian elimination involves three elementary row operations performed on the entries of
a matrix:

• Swap the jth and kth rows.

• For indices j 6= k and some scalar c, take the kth row, scale all its entries by c, and add the result to
the jth row.

• For an index j and a nonzero scalar c, scale the jth row by c.

Our first goal is to understand some features of these row operations.

1. Each of these operations can be encoded by matrices S(j, k), A(j, k, c), and M(j, c) so that S(j, k) ·X,
A(j, k, c) · X, and M(j, c) · X are the respective results of the operations applied to a matrix X.
These matrices S(j, k), A(j, k, c), and M(j, c) are called elementary matrices. Find descriptions of the
elementary matrices. (This could mean formulas, or English descriptions, or. . . )

2. Check that the elementary matrices are all invertible.

3. You can think of S(j, k), A(j, k, c), and M(j, c) as describing a change of basis. If X encodes the
behavior of a linear map f : V → W on a basis (w1, . . . , wn) of W , then in what bases do S(j, k) ·X,
A(j, k, c) ·X, and M(j, c) ·X encode f?
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Solution. 1. Here are three formulaic descriptions:

S(j, k)yx =


1 y = x and y 6= j, k,

1 y = j and x = k,

1 y = k and x = j,

0 otherwise.

A(j, k, c)yx =


1 y = x,

c y = j and x = k,

0 otherwise.

M(j, c)yx =


1 y = x and y 6= j,

c y = x = j,

0 otherwise.

(Another way to think of this intuitively is that you just perform the operation you want on the identity
matrix of appropriate size - i.e., to swap row j and k, swap these rows in the identity matrix.)

2. All three matrices are invertible because the three row operations they encode are invertible. The
operation S(j, k) is its own inverse, M(j, c) is inverted by M(j, c−1), and A(j, k, c) is inverted by
A(j, k,−c).

3. We consider the product Y ·X in terms of the diagram

Kn Km

Kn Km,

X

Y

Y ·X

id

and to ask what basis Y encodes in the case that Y is an elementary matrix.

• For Y = S(j, k) (assuming, without any loss of generality, that j < k), the standard basis is
traded for

(v1, . . . , vj−1, vk, vj+1, . . . , vk−1, vj , vk+1, . . . , vn).

• For Y = A(j, k, c), vj is replaced by vj + cvk.

• For Y = M(j, c), vj is replaced by cvj . (ECP)

Problem 3.2. A matrix X is said to be upper-triangular when the entries satisfy Xij = 0 whenever i > j.
(When written as a block of numbers, all the entries below the main diagonal are zero.) Describe an algorithm
which modifies a matrix to be upper-triangular using the elementary row operations. (Be sure to argue that
your algorithm actually succeeds at this goal.) (Hint: work one column at a time.)

Solution. We do, indeed, work one column at a time. In the jth column, consider all rows at and below the
jth position. If all their entries in the jth column are zero, this column passes the upper-triangularity test,
and we proceed to the next column. If some row in this region contains a nonzero entry in the jth column, use
a swap operation to place it into the jth row. (Note that this does not disturb any upper-triangularity test
in columns before the jth column, because the swap trades 0 entries for 0 entries.) Then, use the rescaling
operation to make the (new) jth row have a 1 in the jth column. Finally, consider every other row at position
i 6= j: scale up the jth row by −Xij , and add it to the ith row so that the (i, j)th position new reads as zero.1

Now the jth column passes the upper-triangularity test, so we proceed to the next column. (ECP)

1If you’re just aiming for upper-triangularity, you might only zero out the rows below jth. That’s fine, but it makes the next
problem harder.
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Problem 3.3. 1. Problem 3.2 can be used to calculate the inverses of matrices. Suppose that your
algorithm row-reduces a matrix X to the identity matrix, i.e.,

En · · · · · E2 · E1 ·X = I

for some sequence of elementary matrices (Ej). Supposing further that X is invertible, i.e.,

X ·X−1 = I

for other some matrix X−1, solve for X−1 in terms of the elementary matrices (Ej).

2. Use your algorithm to calculate the matrix inverse of(
1 1
1 2

)
.

(If necessary, modify your algorithm above to handle this case — that is, make sure it gives you the
identity matrix rather than merely an upper triangular matrix.)

Solution. 1. This equation is easy enough to solve:

X ·X−1 = I

(En · · · · · E2 · E1) ·X ·X−1 = (En · · · · · E2 · E1) · I
X−1 = (En · · · · · E2 · E1) · I.

Our conclusion is that the inverse of X is given by the same sequence of elementary row operations
applied to the identity matrix.

2. We run the row-reduction algorithm on the left and apply the same row operations to the identity
matrix on the right:(

1 1
1 2

)
A(2,1,−1)−−−−−−→

(
1 1
0 1

) (
1 0
0 1

)
A(2,1,−1)−−−−−−→

(
1 0
−1 1

)
(

1 1
0 1

)
A(1,2,−1)−−−−−−→

(
1 0
0 1

) (
1 0
−1 1

)
A(1,2,−1)−−−−−−→

(
2 −1
−1 1

)
.

We conclude that

(
2 −1
−1 1

)
is inverse to

(
1 1
1 2

)
. (ECP)

Problem 3.4. 1. Describe the effect of right-multiplying some matrix X by an elementary matrix.

2. Using both the original elementary row operations and the operations uncovered in the previous part,
devise a variation on your answer to Problem 3.2 that gives an algorithm that rewrites any matrix as
a diagonal matrix. (Again, be sure to argue that your algorithm actually succeeds at this goal.)

3. Conclude that for any linear map f : V → W between finite dimensional vector spaces, we can find
bases of V and W such that the resulting matrix X expressing f is diagonal.

4. Conclude rank-nullity from this form X for f :

dimV = dim im f + dim ker f.

Solution. 1. Right-multiplication by an elementary matrix encodes analogous elementary column opera-
tions. They modify the basis on the target similarly to how the row operations modify the basis on
the source.
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2. We augment the algorithm described above as follows: before ever moving from the jth column to
the (j + 1)st column, we examine the jth row. If it is entirely empty, we proceed to the next column
as before. If the (j, j) entry is nonzero, we can use the scale-and-add column operations to zero out
the other entries in the jth row, then proceed to the next column as before. If the (j, j) entry is zero
and there is some other nonzero entry in the jth row, we swap the jth column for that column and
re-process the new jth column using the elementary row operation algorithm from before. In the end,
this gives a diagonal matrix with only 0s and 1s on the main diagonal.

3. Beginning with any bases for V and W , we get a matrix presentation of f . Applying the row-and-
column reduction algorithm described above, we can modify both bases for V and W so that the matrix
presentation for f becomes diagonal (with only 0s and 1s on the main diagonal).

4. The kernel and image of such a matrix are extremely easy to describe: the image of the matrix consists
of the span of those wj in which the jth diagonal entry is zero, and the kernel of the matrix consits of
the span of whose vj in which the jth diagonal entry is zero. Since there are dimV columns in all, this
gives

dimV = dim im f + dim ker f. (ECP)

4 For submission to Rohil Prasad

Problem 4.1. Suppose that x, y ∈ V are vectors in a vector space V and U,W ≤ V are subspaces of V ,
altogether satisfying the relation

x+ U = y +W

Show that U = W .

Solution. Since 0 ∈W , y ∈ y +W . Therefore, there exists u ∈ U satisfying

x+ u = y

so u = y − x and y − x ∈ U .
For any vector w′ ∈ W , there exists u′ ∈ U such that x + u′ = y + w′ which implies w′ = x − y + u′.

Since x− y, u′ ∈ U , it follows that w′ ∈ U and therefore W ⊂ U .
In the other direction, we have since 0 ∈ U , x ∈ x+ U . Therefore, there exists w ∈W satisfying

y + w = x

so w = x− y and x− y ∈W .
For any vector u′ ∈ U , there exists w′ ∈ W such that x + u′ = y + w′ which implies u′ = y − x + w′.

Since y − x,w′ ∈W , it follows that u′ ∈W and therefore U ⊂W .
Since W ⊂ U and U ⊂W , we must have U = W . (RP)

Problem 4.2. Prove that a nonempty subset A ⊆ V of a vector space V is an affine subset if and only if
for all v, w ∈ A and all λ ∈ K it is also the case that

λ · v + (1− λ) · w ∈ A

(Side remark: for K = R and 0 ≤ λ ≤ 1, this property is called convexity.)

Solution. First we will show that if A is affine, then the property described in the problem statement holds.
Assume A = v + U for a vector v ∈ V and a subspace U ⊂ V .

Then any two elements in A can be expressed in the form v + u1, v + u2 for u1, u2 ∈ U . Expanding out
the sum λ(v + u1) + (1− λ)(v + u2), we get:

λ · (v + u1) + (1− λ) · (v + u2) = λ · v + λ · u1 + (1− λ) · v + (1− λ) · u2
= (λ+ 1− λ) · v + λ · u1 + (1− λ) · u2)

= v + λ · u1 + (1− λ) · u2
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Since U is a subspace, λ ·u1 + (1−λ) ·u2 ∈ U and therefore λ · (v+u1) + (1−λ) · (v+u2) ∈ A as desired.
Now assume that A satisfies the property. Fix some a ∈ A. Showing that A is affine is equivalent to

showing the subset U = {x−a|x ∈ A} is a subspace. To do so, we will show that 0 ∈ U and that U is closed
under scalar multiplication.

Since a ∈ A, we have 0 ∈ U .
Given some scalar λ and an element x− a ∈ U , we have

λ · (x− a) = λx− λa
= λx+ (1− λ)a− a
= (λx+ (1− λ)a− a

By the convexity property, λx+ (1− λ)a ∈ A, and therefore λ · (x− a) ∈ U and U is closed under scalar
multiplication.

Given two elements x1 − a, x2 − a ∈ U , we have their sum is x1 + x2 − 2a = 2 · ( 1
2x1 + 1

2x2 − a). By the
convexity property, 1

2x1 + 1
2x2 ∈ A, so 1

2x1 + 1
2x2 − a ∈ U . Since U is closed under scalar multiplication, it

follows that x1 + x2 − 2a ∈ U and U is closed under addition.
Since U is a subspace, it follows that A is an affine subset of the form a+ U . (RP)

Problem 4.3. Suppose that U ≤ V is a subspace such that the quotient space V/U is finite dimensional.
Show that V is isomorphic to U × (V/U).

Solution. We will construct this isomorphism directly. Note that a dimension argument does not work here
since V,U are not necessarily finite dimensional.

Assume that V/U has dimension n. Pick v1, . . . , vn ∈ V such that the affine subsets v1 +U, . . . , vn +U ∈
V/U form a basis of V/U .

For any affine subset v+U ∈ V/U , there exists constants k1, . . . , kn ∈ K such that
∑n
i=1 kivi+U = v+U .

Thus, we can define ϕ as the map sending a pair (u, v + U) ∈ U × V/U to the vector u +
∑n
i=1 kivi. It

is clear by definition that ϕ is linear, so we must show it is injective and surjective.
If there exists (u, v + U) such that ϕ(u, v + U) = 0, then we require u +

∑n
i=1 kivi = 0, which implies∑n

i=1 kivi = −u ∈ U . However, since the vi+U form a basis of V/U ,
∑n
i=1 kivi ∈ U implies that

∑n
i=1 ki(vi+

U) = U . Since U the zero element of V/U , it follows that all the ki must equal 0. Therefore, we have that
u = −(

∑
kivi) = 0 and v + U = U , so only the zero element maps to 0 and ϕ is injective.

For any v ∈ V , there exists constants ki such that
∑n
i=1 kivi+U = v+U . It follows that

∑n
i=1 kivi−v ∈ U .

Denoting this vector by u, we have that ϕ(u, v + U) = v and therefore ϕ is surjective. (RP)
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