Homework \#4 Solutions

Thayer Anderson, Davis Lazowski, Handong Park, Rohil Prasad
Eric Peterson

1 For submission to Thayer Anderson

Problem 1.1. Suppose that V is a vector space over a field of scalars K with $\operatorname{dim} V=1$. Show that each element $f \in \mathcal{L}(V, V)$ has the form $f(v)=\lambda_{f} \cdot v$ for some scalar λ_{f} (which depends on f but not on v). Conclude from this that there is an isomorphism of vector spaces

$$
\mathcal{L}(V, V) \simeq K
$$

which does not depend upon choosing a basis for V.
Solution. The set $\mathcal{L}(V, V)$ has vector-space structure over K and dimension $(\operatorname{dim} V)^{2}=1$. The identity map, id_{V} is a linear map in $\mathcal{L}(V, V)$. It follows that $\left\{\operatorname{id}_{V}\right\}$ is a basis for $\mathcal{L}(V, V)$. As a basis, this set is spanning, and thus if $f \in \mathcal{L}(V, V)$ then $f=\lambda_{f} \cdot \operatorname{id}_{V}$ for some $\lambda \in K$. It follows that $f(v)=\lambda_{f} \cdot \operatorname{id}_{V}(v)=\lambda_{f} \cdot v$ for all $v \in V$.

Let the map $\varphi: \mathcal{L}(V, V) \rightarrow K$ be defined by its action on a basis: $\operatorname{id}_{V} \mapsto 1$. We see that $\varphi(f)=\lambda_{f}$. We must prove this map is linear, surjective, and injective. To show linearity, first consider $f+g$ for linear maps f and g.

$$
\begin{array}{r}
(f+g)(v)=f(v)+g(v)=\lambda_{f}(v)+\lambda_{g}(v)=\left(\lambda_{f}+\lambda_{g}\right)(v) \\
\Rightarrow \lambda_{f+g}=\lambda_{f}+\lambda_{g}
\end{array}
$$

Then we see

$$
\varphi(f+g)=\lambda_{f+g}=\lambda_{f}+\lambda_{g}
$$

Similarly for scalar multiplication, consider the map $c \cdot f$ for $c \in K$ and $f \in \mathcal{L}(V, V)$. Then

$$
(c \cdot f)(v)=c \cdot f(v)=c \lambda_{f} \cdot v=\left(c \lambda_{f}\right) v
$$

Thus

$$
\varphi(c f)=c \lambda_{f}
$$

We conclude that φ is linear and since it maps a basis to a basis it is an isomorphism. Alternatively, we can see that $\varphi(f)=0$ only if $f=0$. Then it follows that φ is a bijection.

Solution. Here's an alterative solution. Take some non-zero vector $v \in V$. Then $\{v\}$ forms a basis for V. Since the vector $f(v) \in V$ it follows that $f(v) \in \operatorname{span}(\{v\})$. Thus $f(v)=\lambda_{v, f} \cdot v$. Suppose that $\lambda_{v^{\prime}, f} \neq \lambda v, f$ for two non-zero vectors v and v^{\prime}. Then, by the fact that v spans, we can say $v^{\prime}=c \cdot v$. We have

$$
\lambda_{v^{\prime}, f} v^{\prime}=f\left(v^{\prime}\right)=f(c v)=c f(v)=c \lambda_{v, f} v=\lambda_{v, f} c v=\lambda_{v, f} v^{\prime}
$$

We conclude that $\lambda_{v^{\prime}, f}=\lambda_{v, f}$ and thus the λ_{f} is determined by f and is basis independent. In addition, the definition of $f(v)=\lambda_{f}(v)$ is consistent at $v=0$. Then we prove the existence of the desired isomorphism as in previous solution.

Problem 1.2. Suppose that $f: V \rightarrow W$ and $g: W \rightarrow X$ are linear maps

1. Show that $\operatorname{dim} \operatorname{ker}(g \circ f) \leq \operatorname{dim} \operatorname{ker} f+\operatorname{dim} \operatorname{ker} g$.
2. Show that $\operatorname{dimim}(g \circ f) \leq \min \{\operatorname{dimim} f, \operatorname{dimim} g\}$.

Solution. 1. Consider the map $h:=\left.f\right|_{\operatorname{ker}(g \circ f)}: \operatorname{ker}(g \circ f) \rightarrow W$. Since kernels are subspaces, this map makes sense. Apply the fundamental theorem for linear maps to h :

$$
\operatorname{dim} \operatorname{ker}(g \circ f)=\operatorname{dim} \operatorname{ker} h+\operatorname{dimim} h
$$

Note that $\operatorname{ker} h \subset \operatorname{ker} f$ and so $\operatorname{dim} \operatorname{ker} h \leq \operatorname{dim} \operatorname{ker} f$. Similarly, suppose $w \in \operatorname{im} h$. Then $w=$ $h(v)=f(v)$ for some $v \in \operatorname{ker}(g \circ f)$. Therefore $g(w)=(g \circ f)(v)=0$. Thus $w \in \operatorname{ker} g$. Therefore, $\operatorname{dim} \operatorname{im} h \leq \operatorname{dim} \operatorname{ker} g$. Combining these inequalities, we have

$$
\operatorname{dim} \operatorname{ker}(g \circ f) \leq \operatorname{dim} \operatorname{ker} f+\operatorname{dim} \operatorname{ker} g
$$

This completes the proof.
2. To prove this claim, I will prove that $\operatorname{dim} \operatorname{im}(g \circ f) \leq \operatorname{dim} \operatorname{im} g$ and $\operatorname{dim} \operatorname{im}(g \circ f) \leq \operatorname{dimim} f$. For the first inequality, note that $\operatorname{im}(g \circ f) \subset \operatorname{im} g$ and thus the inequality follows.
For the second inequality, note that $\operatorname{im} f$ is a subspace of W. Thus we can consider the linear map $h:=\left.g\right|_{\mathrm{im} f}$. Applying the fundamental theorem for linear maps,

$$
\operatorname{dimim} f=\operatorname{dimim} h+\operatorname{dim} \operatorname{ker} h
$$

I claim that $\operatorname{im} h=\operatorname{im}(g \circ f)$. To prove this, I prove both inclusions. Suppose $x \in \operatorname{im} h$. Then $x=g(w)$ for some $w \in \operatorname{im} f$. Then we see that $w=f(v)$ for some $v \in V$. Thus $x=g(f(v))$ and therefore $x \in \operatorname{im}(g \circ f)$. For the other inclusion, suppose that $x \in \operatorname{im}(g \circ f)$. Then $x=g(f(v))$ for some $v \in V$. Then $x=g(w)$ where $w=f(v) \in \operatorname{im} f$. This proves the other inclusion. Thus we have proven that $\operatorname{im} h=\operatorname{im}(g \circ f)$. Now we have the following:

$$
\operatorname{dimim} f-\operatorname{dim} \operatorname{ker} h=\operatorname{dimim}(g \circ f)
$$

Since $\operatorname{dim} \operatorname{ker} h \geq 0$ it follows that

$$
\begin{equation*}
\operatorname{dimim} f \geq \operatorname{dimim}(g \circ f) \tag{TA}
\end{equation*}
$$

This second inequality completes the proof.
Problem 1.3. Let $f, g: V \rightarrow W$ be two linear maps.

1. Suppose that W is finite dimensional. Show that $\operatorname{ker} f \subset \operatorname{ker} g$ if and only if there exists a third linear map $h: W \rightarrow W$ satisfying $g=h \circ f$.
2. Suppose that V is finite dimensional. Show that $\operatorname{im} f \subset \operatorname{im} g$ if and only if there exists a third linear map $h: V \rightarrow V$ satisfying $f=g \circ h$.

Solution.

Lemma 1. Suppose X is a K vector-space such that $\operatorname{dim} X$ is finite. Suppose that $U \leq X$ is a subspace. There exists a linear map $\varphi: X \rightarrow U$ such that $\left.\varphi\right|_{U}=\mathrm{id}_{U}$.
Note. One might call φ the projection map onto the subspace U. You can clearly see that $\varphi^{2}=\varphi$. We will deal a lot with these projection maps in the future, so it may be worthwhile to study their construction.

Proof. Take a basis $u_{1}, \ldots u_{n}$ for U. Extend this to $S=\left\{u_{1}, \ldots, u_{n}, x_{1}, \ldots x_{m}\right\}$, a basis for X. Then let $\varphi: X \rightarrow U$ be defined as follows:

$$
\varphi\left(a_{1} u_{1}+\cdots+a_{n} u_{n}+a_{n+1} x_{1}+\cdots+a_{n+m} x_{m}\right)=a_{1} u_{1}+\cdots+a_{n} u_{n}
$$

We see that this defines a single, well-defined, value for φ on all $x \in X$ because S is a basis. To prove linearity, let

$$
\begin{array}{r}
x=a_{1} u_{1}+\cdots+a_{n} u_{n}+a_{n+1} x_{1}+\cdots+a_{n+m} x_{m} \\
c y=c a_{1}^{\prime} u_{1}+\cdots+c a_{n}^{\prime} u_{n}+c a_{n+1}^{\prime} x_{1}+\cdots+c a_{n+m}^{\prime} x_{m}
\end{array}
$$

for arbitrary $x, y \in X$ and $c \in K$. Then consider

$$
\begin{array}{r}
\varphi\left(a_{1} u_{1}+\cdots+a_{n} u_{n}+a_{n+1} x_{1}+\cdots+a_{n+m} x_{m}\right. \\
\left.+c a_{1}^{\prime} u_{1}+\cdots+c a_{n}^{\prime} u_{n}+c a_{n+1}^{\prime} x_{1}+\cdots+c a_{n+m}^{\prime} x_{m}\right) \\
=\left(a_{1}+c a_{1}^{\prime}\right) u_{1}+\cdots+\left(a_{n}+c a_{n}^{\prime}\right) u_{n}=\varphi(x)+c \varphi(y)
\end{array}
$$

This proves that φ is a linear map. By inspection, $\left.\varphi\right|_{U}=\mathrm{id}_{U}$.

1. First, the forwards direction. Suppose there exists a linear map $h: W \rightarrow W$ satisfying $g=h \circ f$. Suppose that $v \in \operatorname{ker} f$. Then $g(v)=h(f(v))=h(0)=0$. Therefore $v \in \operatorname{ker} g$. It follows that $\operatorname{ker} f \subset \operatorname{ker} g$.
For the reverse direction, I present two proofs. One is very "algebra-y" and the other is very "linear-algebra-y". I think the first is more elegant, but the second has better intutions for you at this point. Take whichever you prefer.

Proof. Suppose that ker $f \subset \operatorname{ker} g$. Let $\varphi: W \rightarrow \operatorname{im} f$ be a linear map whose existence is given by Lemma 1. Then let $\pi: V \rightarrow V /$ ker f be the canonical quotient map. Then let $\tilde{f}=\pi \circ f$. We note that $\tilde{f}: V / \operatorname{ker} f \rightarrow W$ is an isomorphism. (If this construction is confusing to you, refer to Axler 3.91). Then the following diagram commutes:

Namely, I claim $\tilde{f}^{-1} \circ \varphi \circ f=\pi$. This is in fact a fairly trivial claim as $\tilde{f}=\pi \circ f$ and $\varphi \circ f=f$ because $f: V \rightarrow W$ embeds V in W as $\operatorname{im} f$. Let $\tilde{g}: V / \operatorname{ker} f \rightarrow W$ be the map defined by $\tilde{g}(v+\operatorname{ker} f)=$ $g(v+\operatorname{ker} f)=g(v)$. Such a map is well defined because $\operatorname{ker} f \subset \operatorname{ker} g$, as represented in the last equality. This is essential so it bears repeating. If $x, y \in v+\operatorname{ker} f$ then $x-y \in \operatorname{ker} f \Rightarrow x-y \in \operatorname{ker} g$. Then $g(x)-g(y)=g(x-y)=0$. Thus $g(x)=g(y)$. So the map is well defined on the affine subsets.
Then we see that $\tilde{g}\left(\left(v+c v^{\prime}\right)+\operatorname{ker} f\right)=g\left(\left(v+c v^{\prime}\right)+\operatorname{ker} f\right)=g\left(v+c v^{\prime}\right)=g(v)+c g\left(v^{\prime}\right)$. Thus \tilde{g} is a linear map. We see by inspection that $g=\tilde{g} \circ \pi$.
Then let $h=\tilde{g} \circ \tilde{f}^{-1} \circ \varphi$. As a composition of linear maps, h is a linear map. It only remains to be shown that $h \circ f=g$, but this was the point of the commutative diagram!

$$
h \circ f=\tilde{g} \circ \tilde{f}^{-1} \circ \varphi \circ f=\tilde{g} \circ \pi=g
$$

Proof. Now for the second proof. This time with bases and more explicit constructions. We are given that W is finite dimensional. Construct a basis for $\operatorname{im} f$. Such a basis has the form $S=$
$\left\{f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right\}$ for $v_{i} \in V$. (As a basis for $\operatorname{im} f$, each basis element is in the image). Extend S to a basis for W as follows $S^{\prime}=\left\{f\left(v_{1}\right), \ldots, f\left(v_{n}\right), w_{1}, \ldots, w_{m}\right\}$. Then let $\varphi: W \rightarrow V$ be defined as

$$
\varphi\left(a_{1} f\left(v_{1}\right)+\cdots+a_{n} f\left(v_{n}\right)+a_{n+1} w_{1}+\cdots+a_{n+m} w_{m}\right)=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

To show linearity of this map, suppose we have w and w^{\prime} arbitrary as follows:

$$
\begin{aligned}
& w=a_{1} f\left(v_{1}\right)+\cdots+a_{n} f\left(v_{n}\right)+a_{n+1} w_{1}+\cdots+a_{n+m} w_{m} \\
& w^{\prime}=b_{1} f\left(v_{1}\right)+\cdots+b_{n} f\left(v_{n}\right)+b_{n+1} w_{1}+\cdots+b_{n+m} w_{m}
\end{aligned}
$$

Then we have, for $c \in K$ arbitrary

$$
\begin{aligned}
\varphi\left(w+c w^{\prime}\right)= & \varphi\left(\left(a_{1}+c b_{1}\right) f\left(v_{1}\right)+\cdots+\left(a_{n}+c b_{n}\right) f\left(v_{n}\right)\right. \\
& \left.+\left(a_{n+1}+c b_{n+1}\right) w_{1}+\cdots+\left(a_{n+m}+c b_{n+m}\right) w_{m}\right) \\
= & \left(a_{1}+c b_{1}\right) v_{1}+\cdots+\left(a_{n}+c b_{n}\right) v_{n}=\varphi(w)+c \varphi\left(w^{\prime}\right)
\end{aligned}
$$

Thus φ is a linear map. Then let $h: W \rightarrow W$ be defined by $h=g \circ \varphi$. As a composition of linear maps, h is a linear map. Then I claim $h \circ f=g$. Consider $\varphi \circ f$. I claim that $\varphi \circ f(v) \in v+\operatorname{ker} f$. This must be the case as $f \circ \varphi(w)=w$ for $w \in \operatorname{im} f$ by inspection. Then, since ker $f \subset \operatorname{ker} g$ it follows that

$$
g \circ \varphi \circ f(v)=g\left(v^{\prime}\right)
$$

for $v^{\prime} \in v+\operatorname{ker} f$. Thus

$$
\begin{aligned}
& g\left(v^{\prime}\right)=g(v) \\
& \Rightarrow g \circ \varphi \circ f=g
\end{aligned}
$$

This completes the latter proof.
2. For the second part, we proceed very similarly, and I will only present one of the proof techniques (but note that a similar style proof could be constructed with another commutative diagram).
For the forwards direction, suppose that there exists a linear map $h: V \rightarrow V$ satisfying $f=g \circ h$. Then for $w \in \operatorname{im} f$ there exists a $v \in V$ such that $g \circ h(v)=f(v)=w$. But $h(v)$ is a vector like any other, and is the preimage of w under g. Thus the claim is proven.
For the reverse direction, suppose that $\operatorname{im} f \subset \operatorname{im} g$. Let w_{1}, \ldots, w_{n} be a basis for $\operatorname{im} f$ (finite dimensional because V is finite dimensional). Then extend this to a basis for V by adding w_{n+1}, \ldots, w_{n+m}. We see that $w_{i}=f\left(v_{i}\right)$ for $1 \leq i \leq n$ and $w_{i}=g\left(v_{i}^{\prime}\right)$ for $1 \leq i \leq n$. Note that here we have applied the crucial assumption that $\operatorname{im} f \subset \operatorname{im} g$.
The vectors v_{1}, \ldots, v_{n} span a subspace $U \leq V$. Then construct φ : $V \rightarrow U \hookrightarrow V$ (the hooked arrow just means "naturally included in"), the projection map from Lemma ??. Then define the map $h: V \rightarrow V$ by its action on the basis of V :

$$
h\left(v_{i}\right)= \begin{cases}v_{i}^{\prime} & 1 \leq i \leq n \\ 0 & \text { else }\end{cases}
$$

This map is linear by analogy to the previous part. I claim that $f=g \circ h$. Suppose $v \in V$ arbitrary such that $f(v)=a_{1} f\left(v_{1}\right)+\cdots+a_{n} f\left(v_{n}\right)$. Then we consider $g \circ h(v)$:

$$
\begin{array}{r}
g \circ h(v)=g\left(a_{1} v_{1}^{\prime}+\cdots+a_{n} v_{n}^{\prime}\right)=a_{1} w_{1}+\cdots+a_{n} w_{n} \\
=a_{1} f\left(v_{1}\right)+\cdots+a_{n} f\left(v_{n}\right)=f(v) \tag{TA}
\end{array}
$$

This completes the proof.

2 For submission to Davis Lazowski

Problem 2.1. Actually check the distributivity of linear maps. Suppose you are given linear maps

$$
f, g: V \rightarrow W
$$

and a third linear map

$$
h: W \rightarrow X
$$

Demonstrate $h(f+g)=(h f)+(h g)$.
Solution. It's enough to show that $\forall x: h(f+g)(x)=[(h f)(x)+h g(x)]$.
But $(f+g)(x)$ is just a vector, and $(f+g)(x)=f(x)+g(x)$, which is also just a vector. So by linearity:

$$
\begin{array}{r}
h((f+g)(x)) \\
=h(f(x)+g(x)) \\
=h(f(x))+h(g(x)) \\
=[h f](x)+[h g](x) \tag{DL}
\end{array}
$$

Problem 2.2. Let $f: V \rightarrow W$ be a linear map and suppose that V is finite dimensional. Show that there exists a subspace $U \leq V$ with $U \oplus \operatorname{ker} f=V$ and $f(U)=\operatorname{im} V$.

Solution. ker f is a subspace. So by the algorithm for finding the complement of a subspace discussed in class, there exists U : ker $f \oplus U=V$. So it's enough to show that $f(U)=\operatorname{imV}$.

Let $i \in \operatorname{imV}$. Then there exists $v \in V: f(v)=i$. By the direct sum relation, there are $k \in \operatorname{ker} f, u \in U$ such that $v=k+u$. Also, $f(k)=0$ by definition of the kernel. So

$$
\begin{equation*}
f(u)=f(v-k)=f(v)-f(k)=f(v)-0=f(v) \tag{DL}
\end{equation*}
$$

So $f(U) \supset \operatorname{im}(\mathrm{V})$. But also $f(U) \subset \operatorname{im}(\mathrm{V})$ by definition of the image. Therefore $f(U)=\operatorname{im}(\mathrm{V})$
Problem 2.3. Suppose that $f: V \rightarrow W$ is a linear function of vector spaces V and W over a scalar field K, and let $\left(w_{1}, \ldots, w_{n}\right)$ be a basis for im f. Show that there exist $\varphi_{1}, \ldots, \varphi_{n} \in \mathcal{L}(V, K)$ such that

$$
f(v)=\varphi_{1}(v) \cdot w_{1}+\cdots+\varphi_{n}(v) \cdot w_{n}
$$

Solution. Define $\pi_{j}(w)$ as the coefficent of w_{j} when w is written in terms of the basis $w_{1} \ldots w_{n}$, so that $\pi_{j}: W \rightarrow K$. By linear independence of the basis, this definition is well-defined.

Claim. π_{j} is linear.
Proof. Let $w=\sum_{i=1}^{n} \alpha_{i} w_{i}, u=\sum_{i=1}^{n} \beta_{i} w_{i}$.
Then $\pi_{j}(w)=\alpha_{j}, \pi_{j}(u)=\beta_{j}$. Also, $w+\lambda u=\sum_{i=1}^{n}\left(\alpha_{i}+\lambda \beta_{i}\right) w_{i}$.
Therefore,

$$
\pi_{j}(w+\lambda u)=\alpha_{j}+\lambda \beta_{j}=\pi_{j}(w)+\lambda \pi_{j}(u)
$$

So $\pi_{j} \in \mathcal{L}(W, K)$. Therefore, $\pi_{j} \circ f \in \mathcal{L}(V, K)$.
Also, by definition of the π_{j},

$$
\begin{equation*}
f(v)=\sum_{j=1}^{n}\left[\pi_{j} \circ f\right](v) w_{j} \tag{DL}
\end{equation*}
$$

Problem 2.4. Prove that the intersection of any finite collection of affine subsets of V is either the empty set or yet another affine subset.

Solution. Recall that an affine subset of V is $v+U$, with $v \in V$ and $U \subset V$ a subspace. If W is a complement subspace of $W, \forall v+U \exists w \in W: w+U=v+U$.

This is because $v=\tilde{w}+\tilde{u}$, with $\tilde{w} \in W, \tilde{u} \in U$. Clearly $\tilde{u} \in U$, so can be dropped, so $\tilde{w}+U=v+U$.
Recall also that the solution space of $f(v)=w$ is always an affine subset of V or empty. Let's show the reverse implication, that every affine subset of V is also the solution space of an equation.

Let U a subspace, $u_{1} \ldots u_{m}$ a basis of this subspace. Extend this to a basis $u_{1} \ldots u_{m}, r_{1} \ldots r_{n-m}$ of V. Write $x \in V$ as $x=\sum_{j=1}^{m} \alpha_{j} u_{j}+\sum_{i=1}^{n-m} \beta_{i} r_{i}$.

Define $\pi_{R} \in \mathcal{L}(V, V)$ as $\pi_{R}(x)=\sum_{j=1}^{n-m} \beta_{i} r_{i}$. Then ker $\pi_{R}=U$. The equation $\pi_{R}(u)=w$, with $w \in W$, then clearly has solution space $w+U=v+U$.

Let $v_{i}+U_{i}$ be some collection of affine subspaces. Denote their associated equations as $\pi_{R_{i}}(u)=w_{i}$.
Observe that $\left(v_{i}+U_{i}\right) \cap\left(v_{i^{\prime}}+U_{i^{\prime}}\right)$ is just the set of u that simultaneously solve the associated equations:

$$
\begin{array}{r}
\pi_{R_{i}}(u)=w_{i} \\
\pi_{R_{i^{\prime}}}(u)=w_{i^{\prime}}
\end{array}
$$

And a simlar relation holds true for the intersection of any collection of affine subspaces.
Let $\left(v_{i}+U_{i}\right), i \in I$ a collection of affine subspaces. Define $\pi \in \mathcal{L}\left(V, V^{I}\right)$ by $\pi(u)=\left(\pi_{R_{1}}(u), \pi_{R_{2}}(u) \ldots.\right)$
Then the equation

$$
\pi(u)=\left(w_{1}, w_{2} \ldots\right)
$$

Has u as a solution if any only if it solves all the equations $\pi_{R_{j}}(u)=w_{j}$. So $u \in \bigcap_{i \in I}\left(v_{i}+U_{i}\right)$. But if $u \in \bigcap_{i \in I}\left(v_{i}+U_{i}\right)$, then u solves each equation $\pi_{R_{j}}(u)=w_{j}$, so solves $\pi(u)=\left(w_{1}, w_{2} \ldots\right)$. But the solution space of $\pi(u)=\left(w_{1}, w_{2} \ldots\right)$ is an affine subset or empty, therefore done.

3 For submission to Handong Park

Your task is to reinvent Gaussian elimination, since this topic is not covered in the book.
Problem 3.1. Gaussian elimination involves three elementary row operations performed on the entries of a matrix:

- Swap the $j^{\text {th }}$ and $k^{\text {th }}$ rows.
- For indices $j \neq k$ and some scalar c, take the $k^{\text {th }}$ row, scale all its entries by c, and add the result to the $j^{\text {th }}$ row.
- For an index j and a nonzero scalar c, scale the $j^{\text {th }}$ row by c.

Our first goal is to understand some features of these row operations.

1. Each of these operations can be encoded by matrices $S(j, k), A(j, k, c)$, and $M(j, c)$ so that $S(j, k) \cdot X$, $A(j, k, c) \cdot X$, and $M(j, c) \cdot X$ are the respective results of the operations applied to a matrix X. These matrices $S(j, k), A(j, k, c)$, and $M(j, c)$ are called elementary matrices. Find descriptions of the elementary matrices. (This could mean formulas, or English descriptions, or...)
2. Check that the elementary matrices are all invertible.
3. You can think of $S(j, k), A(j, k, c)$, and $M(j, c)$ as describing a change of basis. If X encodes the behavior of a linear map $f: V \rightarrow W$ on a basis $\left(w_{1}, \ldots, w_{n}\right)$ of W, then in what bases do $S(j, k) \cdot X$, $A(j, k, c) \cdot X$, and $M(j, c) \cdot X$ encode f ?

$$
\begin{aligned}
S(j, k)_{y x} & = \begin{cases}1 & y=x \text { and } y \neq j, k \\
1 & y=j \text { and } x=k \\
1 & y=k \text { and } x=j \\
0 & \text { otherwise }\end{cases} \\
A(j, k, c)_{y x} & = \begin{cases}1 & y=x \\
c & y=j \text { and } x=k \\
0 & \text { otherwise }\end{cases} \\
M(j, c)_{y x} & = \begin{cases}1 & y=x \text { and } y \neq j \\
c & y=x=j \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(Another way to think of this intuitively is that you just perform the operation you want on the identity matrix of appropriate size - i.e., to swap row j and k, swap these rows in the identity matrix.)
2. All three matrices are invertible because the three row operations they encode are invertible. The operation $S(j, k)$ is its own inverse, $M(j, c)$ is inverted by $M\left(j, c^{-1}\right)$, and $A(j, k, c)$ is inverted by $A(j, k,-c)$.
3. We consider the product $Y \cdot X$ in terms of the diagram

and to ask what basis Y encodes in the case that Y is an elementary matrix.

- For $Y=S(j, k)$ (assuming, without any loss of generality, that $j<k)$, the standard basis is traded for

$$
\left(v_{1}, \ldots, v_{j-1}, v_{k}, v_{j+1}, \ldots, v_{k-1}, v_{j}, v_{k+1}, \ldots, v_{n}\right)
$$

- For $Y=A(j, k, c), v_{j}$ is replaced by $v_{j}+c v_{k}$.
- For $Y=M(j, c), v_{j}$ is replaced by $c v_{j}$.

Problem 3.2. A matrix X is said to be upper-triangular when the entries satisfy $X_{i j}=0$ whenever $i>j$. (When written as a block of numbers, all the entries below the main diagonal are zero.) Describe an algorithm which modifies a matrix to be upper-triangular using the elementary row operations. (Be sure to argue that your algorithm actually succeeds at this goal.) (Hint: work one column at a time.)

Solution. We do, indeed, work one column at a time. In the $j^{\text {th }}$ column, consider all rows at and below the $j^{\text {th }}$ position. If all their entries in the $j^{\text {th }}$ column are zero, this column passes the upper-triangularity test, and we proceed to the next column. If some row in this region contains a nonzero entry in the $j^{\text {th }}$ column, use a swap operation to place it into the $j^{\text {th }}$ row. (Note that this does not disturb any upper-triangularity test in columns before the $j^{\text {th }}$ column, because the swap trades 0 entries for 0 entries.) Then, use the rescaling operation to make the (new) $j^{\text {th }}$ row have a 1 in the $j^{\text {th }}$ column. Finally, consider every other row at position $i \neq j$: scale up the $j^{\text {th }}$ row by $-X_{i j}$, and add it to the $i^{\text {th }}$ row so that the $(i, j)^{\text {th }}$ position new reads as zero. ${ }^{1}$ Now the $j^{\text {th }}$ column passes the upper-triangularity test, so we proceed to the next column.

[^0]Problem 3.3. 1. Problem 3.2 can be used to calculate the inverses of matrices. Suppose that your algorithm row-reduces a matrix X to the identity matrix, i.e.,

$$
E_{n} \cdots E_{2} \cdot E_{1} \cdot X=I
$$

for some sequence of elementary matrices $\left(E_{j}\right)$. Supposing further that X is invertible, i.e.,

$$
X \cdot X^{-1}=I
$$

for other some matrix X^{-1}, solve for X^{-1} in terms of the elementary matrices $\left(E_{j}\right)$.
2. Use your algorithm to calculate the matrix inverse of

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) .
$$

(If necessary, modify your algorithm above to handle this case - that is, make sure it gives you the identity matrix rather than merely an upper triangular matrix.)

Solution. 1. This equation is easy enough to solve:

$$
\begin{aligned}
X \cdot X^{-1} & =I \\
\left(E_{n} \cdots E_{2} \cdot E_{1}\right) \cdot X \cdot X^{-1} & =\left(E_{n} \cdots E_{2} \cdot E_{1}\right) \cdot I \\
X^{-1} & =\left(E_{n} \cdots \cdots E_{2} \cdot E_{1}\right) \cdot I .
\end{aligned}
$$

Our conclusion is that the inverse of X is given by the same sequence of elementary row operations applied to the identity matrix.
2. We run the row-reduction algorithm on the left and apply the same row operations to the identity matrix on the right:

$$
\begin{array}{ll}
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right) \xrightarrow{A(2,1,-1)}\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \xrightarrow{A(2,1,-1)}\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \xrightarrow{A(1,2,-1)}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \xrightarrow{A(1,2,-1)}\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) .
\end{array}
$$

We conclude that $\left(\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right)$ is inverse to $\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$.
Problem 3.4. 1. Describe the effect of right-multiplying some matrix X by an elementary matrix.
2. Using both the original elementary row operations and the operations uncovered in the previous part, devise a variation on your answer to Problem 3.2 that gives an algorithm that rewrites any matrix as a diagonal matrix. (Again, be sure to argue that your algorithm actually succeeds at this goal.)
3. Conclude that for any linear map $f: V \rightarrow W$ between finite dimensional vector spaces, we can find bases of V and W such that the resulting matrix X expressing f is diagonal.
4. Conclude rank-nullity from this form X for f :

$$
\operatorname{dim} V=\operatorname{dimim} f+\operatorname{dim} \operatorname{ker} f
$$

Solution. 1. Right-multiplication by an elementary matrix encodes analogous elementary column operations. They modify the basis on the target similarly to how the row operations modify the basis on the source.
2. We augment the algorithm described above as follows: before ever moving from the $j^{\text {th }}$ column to the $(j+1)^{\text {st }}$ column, we examine the $j^{\text {th }}$ row. If it is entirely empty, we proceed to the next column as before. If the (j, j) entry is nonzero, we can use the scale-and-add column operations to zero out the other entries in the $j^{\text {th }}$ row, then proceed to the next column as before. If the (j, j) entry is zero and there is some other nonzero entry in the $j^{\text {th }}$ row, we swap the $j^{\text {th }}$ column for that column and re-process the new $j^{\text {th }}$ column using the elementary row operation algorithm from before. In the end, this gives a diagonal matrix with only 0 s and 1 s on the main diagonal.
3. Beginning with any bases for V and W, we get a matrix presentation of f. Applying the row-andcolumn reduction algorithm described above, we can modify both bases for V and W so that the matrix presentation for f becomes diagonal (with only 0 s and 1 s on the main diagonal).
4. The kernel and image of such a matrix are extremely easy to describe: the image of the matrix consists of the span of those w_{j} in which the $j^{\text {th }}$ diagonal entry is zero, and the kernel of the matrix consits of the span of whose v_{j} in which the $j^{\text {th }}$ diagonal entry is zero. Since there are $\operatorname{dim} V$ columns in all, this gives

$$
\begin{equation*}
\operatorname{dim} V=\operatorname{dimim} f+\operatorname{dim} \operatorname{ker} f \tag{ECP}
\end{equation*}
$$

4 For submission to Rohil Prasad

Problem 4.1. Suppose that $x, y \in V$ are vectors in a vector space V and $U, W \leq V$ are subspaces of V, altogether satisfying the relation

$$
x+U=y+W
$$

Show that $U=W$.
Solution. Since $0 \in W, y \in y+W$. Therefore, there exists $u \in U$ satisfying

$$
x+u=y
$$

so $u=y-x$ and $y-x \in U$.
For any vector $w^{\prime} \in W$, there exists $u^{\prime} \in U$ such that $x+u^{\prime}=y+w^{\prime}$ which implies $w^{\prime}=x-y+u^{\prime}$. Since $x-y, u^{\prime} \in U$, it follows that $w^{\prime} \in U$ and therefore $W \subset U$.

In the other direction, we have since $0 \in U, x \in x+U$. Therefore, there exists $w \in W$ satisfying

$$
y+w=x
$$

so $w=x-y$ and $x-y \in W$.
For any vector $u^{\prime} \in U$, there exists $w^{\prime} \in W$ such that $x+u^{\prime}=y+w^{\prime}$ which implies $u^{\prime}=y-x+w^{\prime}$. Since $y-x, w^{\prime} \in W$, it follows that $u^{\prime} \in W$ and therefore $U \subset W$.

Since $W \subset U$ and $U \subset W$, we must have $U=W$.
Problem 4.2. Prove that a nonempty subset $A \subseteq V$ of a vector space V is an affine subset if and only if for all $v, w \in A$ and all $\lambda \in K$ it is also the case that

$$
\lambda \cdot v+(1-\lambda) \cdot w \in A
$$

(Side remark: for $K=\mathbb{R}$ and $0 \leq \lambda \leq 1$, this property is called convexity.)
Solution. First we will show that if A is affine, then the property described in the problem statement holds. Assume $A=v+U$ for a vector $v \in V$ and a subspace $U \subset V$.

Then any two elements in A can be expressed in the form $v+u_{1}, v+u_{2}$ for $u_{1}, u_{2} \in U$. Expanding out the sum $\lambda\left(v+u_{1}\right)+(1-\lambda)\left(v+u_{2}\right)$, we get:

$$
\begin{aligned}
\lambda \cdot\left(v+u_{1}\right)+(1-\lambda) \cdot\left(v+u_{2}\right) & =\lambda \cdot v+\lambda \cdot u_{1}+(1-\lambda) \cdot v+(1-\lambda) \cdot u_{2} \\
& \left.=(\lambda+1-\lambda) \cdot v+\lambda \cdot u_{1}+(1-\lambda) \cdot u_{2}\right) \\
& =v+\lambda \cdot u_{1}+(1-\lambda) \cdot u_{2}
\end{aligned}
$$

Since U is a subspace, $\lambda \cdot u_{1}+(1-\lambda) \cdot u_{2} \in U$ and therefore $\lambda \cdot\left(v+u_{1}\right)+(1-\lambda) \cdot\left(v+u_{2}\right) \in A$ as desired.
Now assume that A satisfies the property. Fix some $a \in A$. Showing that A is affine is equivalent to showing the subset $U=\{x-a \mid x \in A\}$ is a subspace. To do so, we will show that $0 \in U$ and that U is closed under scalar multiplication.

Since $a \in A$, we have $0 \in U$.
Given some scalar λ and an element $x-a \in U$, we have

$$
\begin{aligned}
\lambda \cdot(x-a) & =\lambda x-\lambda a \\
& =\lambda x+(1-\lambda) a-a \\
& =(\lambda x+(1-\lambda) a-a
\end{aligned}
$$

By the convexity property, $\lambda x+(1-\lambda) a \in A$, and therefore $\lambda \cdot(x-a) \in U$ and U is closed under scalar multiplication.

Given two elements $x_{1}-a, x_{2}-a \in U$, we have their sum is $x_{1}+x_{2}-2 a=2 \cdot\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-a\right)$. By the convexity property, $\frac{1}{2} x_{1}+\frac{1}{2} x_{2} \in A$, so $\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-a \in U$. Since U is closed under scalar multiplication, it follows that $x_{1}+x_{2}-2 a \in U$ and U is closed under addition.

Since U is a subspace, it follows that A is an affine subset of the form $a+U$.
Problem 4.3. Suppose that $U \leq V$ is a subspace such that the quotient space V / U is finite dimensional. Show that V is isomorphic to $U \times(V / U)$.

Solution. We will construct this isomorphism directly. Note that a dimension argument does not work here since V, U are not necessarily finite dimensional.

Assume that V / U has dimension n. Pick $v_{1}, \ldots, v_{n} \in V$ such that the affine subsets $v_{1}+U, \ldots, v_{n}+U \in$ V / U form a basis of V / U.

For any affine subset $v+U \in V / U$, there exists constants $k_{1}, \ldots, k_{n} \in K$ such that $\sum_{i=1}^{n} k_{i} v_{i}+U=v+U$.
Thus, we can define φ as the map sending a pair $(u, v+U) \in U \times V / U$ to the vector $u+\sum_{i=1}^{n} k_{i} v_{i}$. It is clear by definition that φ is linear, so we must show it is injective and surjective.

If there exists $(u, v+U)$ such that $\varphi(u, v+U)=0$, then we require $u+\sum_{i=1}^{n} k_{i} v_{i}=0$, which implies $\sum_{i=1}^{n} k_{i} v_{i}=-u \in U$. However, since the $v_{i}+U$ form a basis of $V / U, \sum_{i=1}^{n} k_{i} v_{i} \in U$ implies that $\sum_{i=1}^{n} k_{i}\left(v_{i}+\right.$ $U)=U$. Since U the zero element of V / U, it follows that all the k_{i} must equal 0 . Therefore, we have that $u=-\left(\sum k_{i} v_{i}\right)=0$ and $v+U=U$, so only the zero element maps to 0 and φ is injective.

For any $v \in V$, there exists constants k_{i} such that $\sum_{i=1}^{n} k_{i} v_{i}+U=v+U$. It follows that $\sum_{i=1}^{n} k_{i} v_{i}-v \in U$. Denoting this vector by u, we have that $\varphi(u, v+U)=v$ and therefore φ is surjective.

[^0]: ${ }^{1}$ If you're just aiming for upper-triangularity, you might only zero out the rows below $j^{\text {th }}$. That's fine, but it makes the next problem harder.

