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1 For submission to Thayer Anderson

Problem 1.1. Let V be the vector space of polynomials of degree at most 3. Prove or disprove that there
exists a basis of V consisting of polynomials, none of which are of degree 3.

Solution. Suppose (f1, . . . , f4) is a collection of vectors in V consisting of polynomials fj with deg fj < 3.
In this case, each fj admits an expression of the form

fj = aj,0 + aj,1x+ aj,2x
2,

and a linear combination of the fjs has the form

k1f1 + · · ·+ k4f4 = (k1a1,0 + · · ·+ k4a4,0) + (k1a1,1 + · · ·+ k4a4,1)x+ (k1a1,2 + · · ·+ k4a4,2)x2.

Hence, the monomial x3 is not in their span, so they cannot form a basis. (ECP)

Problem 1.2 (Follow-up to problem 3.2 from last time). Exhibit an example of a vector space V with
non-equal subspaces U1, U2, and U3 such that

U1 ⊕ U3 = U2 ⊕ U3.

Solution. Let U3 be the span of (1, 0) in R2, and let U1 and U2 be any distinct runs of the complementation
algorithm. (For example, U1 can be the span of (0, 1) and U2 can be the span of (1, 1).) We can re-express
these subspaces as

U3 =

{(
x
y

)∣∣∣∣y = 0

}
, U1 =

{(
x
y

)∣∣∣∣x = 0

}
, U2 =

{(
x
y

)∣∣∣∣x = y

}
.

These sums are direct because a vector in U1 ∩U3 must have x = 0 and y = 0, and a vector in U2 ∩U3 must
have y = 0 and x = y. Finally, these sums because we have dim(U ⊕ V ) = dimU + dimV , and because we
have solved Problem 3.1. (ECP)

Problem 1.3. 1. Under what conditions on the scalars a, b ∈ C are the vectors(
1
a

)
,

(
1
b

)
a linearly dependent set in C2?

2. Under what conditions on the scalars a, b, c ∈ C are the vectors 1
a
a2

 ,

 1
b
b2

 ,

 1
c
c2


a linearly dependent set in C3? (Come up with conditions analogous to those in the previous part.)
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3. State and prove an analogous condition on sequences of n scalars forming sequences of n vectors in Cn.

Solution. Parts 1 and 2 we will work by hand. There is a more “by-hand” solution to Part 3 given by Thayer
below, but we will first give a “clever” solution that references some (simple) results further in the book.

1. If there is a linear dependence among two vectors, one must be a scalar multiple of the other. Since
both of their first components are fixed at 1, the scalar must be 1, and hence it must be the case that
a = b.

2. Again suppose that there is a linear dependence among the vectors:

k1

 1
a
a2

+ k2

 1
b
b2

+ k3

 1
c
c2

 = 0.

If any of the coefficients is zero, then we have reduced to the previous case, so suppose instead that
all of the coefficients in the linear combination are nonzero. We will start to solve the linear system in
k1, k2, k3:

k1 + k2 + k3 = 0,

ak1 + bk2 + ck3 = 0,

a2k1 + b2k2 + c2k3 = 0.

Immediately we see k3 = −(k1 + k2). The second equation then becomes

ak1 + bk2 + c(−k1 − k2) = 0,

in which we solve for k2 to get

k2 =
c− a
b− c

k1, k3 = −(k1 + k2) =
a− b
b− c

k1.

(Or, if division by b− c is not allowed, this is because b = c and we are done.) Substituting everything
into the final equation gives

a2k1 + b2
c− a
b− c

k1 + c2
a− b
b− c

k1 = 0

a2b− a2c+ b2c− b2a+ c2a− c2b
b− c

= 0,

which factors as

(a− b)(a− c)(b− c)
b− c

= 0.

The zero product property then forces either a− b = 0 or a− c = 0.

3. Take (n+ 1) points x0, . . . , xn and consider the problem of constructing a degree n polynomial

f(x) = a0 + a1x+ · · ·+ anx
n

with roots at these specified points. By setting x = xj for various j, we construct a linear system in
the coefficients ak:

0 = a0 + a1x1 + · · ·+ anx
n
1

0 = a0 + a1x2 + · · ·+ anx
n
2

...

0 = a0 + a1xn + · · ·+ anx
n
n,
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or, equivalently, 
0
0
...
0

 =
(
a0 a1 · · · an

)
·


1 1 · · · 1
x1 x2 · · · xn
...

...
...

xn1 xn2 · · · xnn

 .

We are looking for a linear dependence among the rows of this matrix. Axler 3.118 says that the rows
of a matrix are linearly independent if and only if the columns are linearly independent, which connects
with our homework problem.

Interpreting the problem as a linear system has advantages. We know that this system always has a
solution: we can take f(x) =

∏n
j=0(x− xj). Linear dependence of the rows then corresponds to when

we can find multiple solutions to this problem. If some value is repeated in our list (say, xn = xj for

j < n), then f(x) =
∏n−1

j=0 (x − xj) also has roots in all the right places (since xj already guaranteed
f(xn) = f(xj) = 0), and we we can multiply by any one left-over factor (x − s) that we like to get a
polynomial of the right degree. Conversely, if all of the xj are distinct, then the easy part of Axler’s
4.17 (which is just the polynomial division algorithm) says that there is a unique solution to this
polynomial interpolation problem. (ECP)

Solution. Here I will focus on an inductive solution for the last part of the problem. Suppose we have n
vectors represented as follows: 

1
a1
...

an−11

 ,


1
a2
...

an−12

 , . . . ,


1
an
...

an−1n

 ,

Suppose that for a set of n − 1 vectors with length n − 1 of the above form (except shorter by one entry)
that linear dependence occurs if and only if ai = aj for some i 6= j. We have verified the base case in parts
1 and 2. Suppose that the set of n vectors given above has some linear relation (not necessarily non-trival).
Then we have:

c1


1
a1
...

an−11

+ c2


1
a2
...

an−12

+ · · · ,+cn


1
an
...

an−1n

 = 0

This generates the following system of n equations:

c1 + c2 + · · ·+ cn = 0

c1a1 + c2a2 + · · ·+ cnan

...

c1a
n−1
1 + c2a

n−1
2 + · · ·+ cna

n−1
n = 0

Taking the jth equation, multiplying by an and subtracting by the j + 1 equation yields a new system of n
equations.

an(c1 + c2 + · · ·+ cn)

−(c1a1 + c2a2 + · · ·+ cnan) = 0

...

an(c1a
n−2
1 + · · ·+ cna

n−2
n )

−(c1a
n−1
1 + c2a

n−1
2 + · · ·+ cna

n−1
n ) = 0
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The solutions to original equations must also be solutions to the new system of equations. Simplifying the
new system of equations produces the following form:

c1(an − a1) + · · ·+ cn−1(an − an−1) + 0 = 0

...

c1(ana
n−1
1 − an1 ) + · · ·+ cn−1(ana

n−1
n−1 − ann−1) + 0 = 0

And factoring out the largest powers:

c1(an − a1) + · · ·+ cn−1(an − an−1) + 0 = 0

...

cn−1(an − a1)an−11 + · · ·+ cn−1(an − an−1)an−1n−1 + 0 = 0

We recognize that this system of equations can be represented as a linear relation on the following n − 1
vectors:

c1(an − a1)


1
a1
...

an−11

+ c2(an − a2)


1
a2
...

an−12

+ cn−1(an − an−1)


1

an−1
...

an−1n−1

 =


0
0
...
0


Such a linear combination exactly satisfies the inductive hypothesis. We know that the linear combination is
non-trivial exactly when ai = aj for some 1 ≤ i, j ≤ n−1 with i 6= j. In that case, our condition is proven. If
there is linear independence amongst these n− 1 vectors, then each scalar is equal to 0. Supposing that the
original n vectors are linearly dependent, at least one ci 6= 0. Meaning that an = ai for some i < n. Hence,
our condition is proven. This means that if the original n vectors are linearly dependent, it is necessary that
ai = aj for some i 6= j. If ai = aj for i 6= j then two of the vectors in the original set are identical, and
therefore the set is linearly dependent. This proves sufficiency of our condition and thereby completes the
proof of the claim. Credit to Luke for first showing me this elegant method. (Thayer)

2 For submission to Davis Lazowski

Problem 2.1. For two subspaces U and W of a vector space V , show that if every vector in V belongs to
either U or W (or both) then it must be the case that U = V or W = V (or both).

Solution. If V = U = W , then done.
Otherwise, without loss of generality let U 6= V , so that there exists w ∈ V , w 6∈ U . Then w ∈W .
Suppose there existed u ∈ U, u 6∈ W . Then consider u + w. If u + w ∈ U , then by additive closure

(u + w) − u ∈ U =⇒ w ∈ U , so (u + w) 6∈ U . If u + w ∈ W , then (u + w) − w ∈ W =⇒ u ∈ W , so
(u+ w) 6∈ W . But this is a contradiction. Therefore there does not exist u ∈ U, u 6∈ W . Therefore U ⊂ W ,
and because every v ∈ V is in U or W , every v ∈ V must be in W , so W = V . (DL)

Problem 2.2. Suppose that v1, . . . , vm ∈ V form a linearly independent set and let w ∈ V be another
vector. Show that

dim (span{v1 + w, . . . , vm + w}) ≥ m− 1.
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Solution. Suppose dim span{v1 + w...vm + w} ≤ m− 2. Then there exists cij , and z1...zm−2, such that

m−2∑
j=1

cijzj = vi + w

so that ∑
j=1

(cij − ci′j)zj = (vi + w)− (v′i + w) = vi − v′i.

So, {v1−vm, v2−vm...vn−1−vm} ⊂ {z1...zm−2}, so, in particular, dim span{v1−vm, v2−vm...vn−1−vm} ≤
m− 2, which implies that {v1 − vm....vm−1 − vm} is not a linearly independent list. Therefore, with not all
αj = 0,

m−1∑
j=1

αj(vj − vn) = 0.

Defining βj = αj , and
∑m−1

j=1 −αj = βm, where not all βj are zero because they are simply the same as the
αj ,

m∑
j=1

βjvj = 0

contradicting the linear independence of the vj . (DL)

Problem 2.3. Consider the set S ⊆ C3 of those vectors whose entries are either 0 or 1:
 0

0
0

 ,

 0
0
1

 ,

 0
1
0

 ,

 0
1
1

 ,

 1
0
0

 ,

 1
0
1

 ,

 1
1
0

 ,

 1
1
1

 ⊆ C3.

How many subsets of S form bases for C3?

Solution. The 0 vector is not linearly independent with itself and so can be discounted.
There are three cases:

1. Choosing two or more of the standard basis vectors: Then we can choose any third vector
except their sum, so this is

(
3
2

)
∗ 4 − 2 = 10 choices (the −2 coming because otherwise we get three

copies of the standard basis vectors).

2. Choosing two or more of the combinations of two basis vectors: We can choose any of the
other vectors. So we get

(
3
2

)
∗ 5− 2 = 13 choices.

3. Choosing one with 1 one, one with 2 ones, one with 3 ones

After choosing the x̂ + ŷ + ẑ and one with one standard basis vector, say ê1, the only vector in our
span is ê2 + ê3. So there are two more choices. So there are 3 ∗ 2 = 6 choices. So there are 29 possible
choices. (DL)

3 For submission to Handong Park

Problem 3.1. Suppose that V is finite dimensional and that U ≤ V is a subspace with dimU = dimV .
Show that U = V .
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Solution. U is a subspace of V which is finite dimensional, so U is finite dimensional. We have that dimV = n
for some n ∈ N, and moreover, since dimU = dimV , we also know that dimU = n. So take a basis for U ,
consisting of u1, u2, ..., un ∈ U which are linearly independent. However, since U ≤ V , we have that for all
i such that 1 ≤ i ≤ n, ui ∈ V . Thus these ui also form a basis for V , since we have n linearly independent
vectors in V , which has dimension n. We then have

U = Span({u1, ..., un}) = V (HP)

Problem 3.2. Suppose that V and W are finite dimensional vector spaces.

1. Show that there exists a surjective map V →W if and only if dimV ≥ dimW .

2. Show that there exists an injective map V →W if and only if dimV ≤ dimW .

Solution. 1. First, we prove that if there exists such a surjective map, then dimV ≥ dimW .
We have f : V →W surjective, thus by the Rank-Nullity Theorem:

dimV = dim Im(f) + dimN(f)

where Im(f) is the image of V under f and N(f) is the null space. Since dimension for any subspace is
at least 0, we have that dimN(f) ≥ 0. However, since f is surjective, we must have that Im(f) = W ,
so we have

dimV = dimW + dimN(f) ≥ dimW

Now, we prove the other direction. Suppose dimV ≥ dimW . Call dimV = n and dimW = m, then
n ≥ m.
We will construct a surjective map g : V →W . Take a basis v1, ..., vn for V , and a basis w1, ..., wm for
W . Set g(vi) = wi for all i such that 1 ≤ i ≤ m. For any remaining extra basis vectors vm, ..., vn, just
set g(vi) = 0 for all i such that n ≥ i > m.
Now, given w ∈ W , we want to show that there exists v ∈ V such that g(v) = w. Since we have a
basis for W , we can express w in terms of the basis vectors:

w = a1w1 + a2w2 + ...+ amwm

where the ai ∈ K are scalars. Then we have

g−1(w) = a1v1 + a2v2 + ...+ amwm ∈ V

This works - by linearity,

g(a1v1 + a2v2 + ...+ amwm) = a1g(v1) + ...+ amg(wm) = a1w1 + ...+ amwm = w

Thus we’ve shown that for any w ∈ W , we can find v ∈ V such that g(v) = w, so g is surjective, and
thus a g : V →W surjective map exists.

2. First, we prove that if there exists an injective map, then dimV ≤ dimW .
Since f : V →W is injective, then N(f), the null space of f , must just be 0. Thus dimN(f) = 0, and
by Rank-Nullity:

dimV = dim Im(f) + dimN(f) = dim Im(f)

Since the image Im(f) is a subspace of W , we have that dim Im(f) ≤ dimW , so

dimV = dim Im(f) ≤ dimW

Now, we prove the other direction. Suppose dimV ≤ dimW . Call dimV = n and dimW = m, then
n ≤ m.
We will construct an injective map g : V →W . Take a basis v1, ..., vn for V , and a basis w1, ..., wm for

6



W . Set g(vi) = wi for all i such that 1 ≤ i ≤ n.
This map is injective. To prove this, suppose g(a) = 0. We want to prove that a = 0.
Write a as a linear combination of basis vectors, then a = c1v1 + ...+ cnvn. But then,

g(a) = g(c1v1 + ...+ cnvn) = c1g(v1) + ...+ cng(vn) = c1w1 + ...+ cnwn

Since w1, ..., wn are linearly independent in W , we must have that c1, ..., cn = 0. Thus a = 0, so the
only way to have g(a) = 0 is by having a = 0, meaning that the null space of g is also 0, making g
injective. (HP)

Problem 3.3. For sets X, Y , and Z, there is an alternating sum formula

|X ∪ Y ∪ Z| = |X|+ |Y |+ |Z|
− |X ∩ Y | − |X ∩ Z| − |Y ∩ Z|
+ |X ∩ Y ∩ Z|

expressing the cardinality of the union by accounting for the overlaps of the sets. By analogy, for subspaces
X, Y , and Z of V you might also expect the formula

dim(X + Y + Z) = dimX + dimY + dimZ

− dim(X ∩ Y )− dim(X ∩ Z)− dim(Y ∩ Z)

+ dim(X ∩ Y ∩ Z)

to hold. Prove or disprove this formula.

Solution. This formula fails. Consider the overall vector space R2, with

X = {(x, 0) |x ∈ R}
Y = {(0, y) | y ∈ R}
Z = {(x, y) |x = y ∈ R}

In this situation, we find that

X ∩ Y = {0}
X ∩ Z = {0}
Y ∩ Z = {0}

X ∩ Y ∩ Z = {0}

Then we get that A basis for X is {(1, 0)}, a basis for Y is {(0, 1)}, and a basis for Z is {(1, 1)}.
So according to the formula, we should have

dim(X + Y + Z) = dimX + dimY + dimZ

− dim(X ∩ Y )− dim(X ∩ Z)− dim(Y ∩ Z)

+ dim(X ∩ Y ∩ Z)

= 1 + 1 + 1− 0− 0− 0 + 0

= 3

But we know that X + Y + Z = R2, so dim(X + Y + Z) = 2, disproving the claim. (HP)
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4 For submission to Rohil Prasad

Problem 4.1. Let Vm denote the vector space of polynomials of degree at most m and for each j suppose
that fj is some polynomial of degree j. Show that {f0, f1, . . . , fm} form a basis for Vm.

Solution. We will show this by induction on m.
For m = 0, the assertion is clear. We have V0 = R and any constant f0 ∈ R is a basis.
Now assume that any set of polynomials g0, g1, . . . , gm−1 form a basis of Vm−1 where gi has degree i.
To show that f0, f1, . . . , fm form a basis for Vm, we must show that they are linearly independent and

span Vm.
Let p =

∑m
i=0 cix

i be a polynomial and element of Vm. Since fm is of degree m, it has a nonzero
xm-coefficient which we will denote by c.

It follows that the polynomial p − cm
c f ∈ Vm has degree ≤ m − 1 since its xm-coefficient is 0. By our

inductive hypothesis, f0, . . . , fm−1 span the space of polynomials of degree at most m−1. Therefore, p− cm
c f

is equal to a linear combination
∑m−1

i=0 bifi. As a result, p = cm
c f +

∑m−1
i=0 bifi, so p can be expressed as a

linear combination of the fi and they span Vm.
Now let λi be scalars such that

∑m
i=0 λifi = 0. Showing linear independence is equivalent to showing

that all the λi must be 0. Since fm is the only polynomial of degree m in the set, the sum
∑m

i=0 λifi has
the same xm-coefficient as λmfm. However, since the right-hand side is equal to 0, this xm-coefficient is 0
and therefore λm must equal 0.

Plugging this into the original sum, we find that
∑m−

i=0 λifi = 0. However, by our inductive hypothesis,
f0, . . . , fm−1 are linearly dependent and therefore the rest of the λi must be 0 as well. (RP)

Problem 4.2. Suppose that U and V are subspaces of R8 such that dimU = 3, dimV = 5, and U +V = R8.
Show that U + V is a direct sum.

Solution. By definition, it suffices to show that U ∩ V = {0}.
Let u1, u2, u3 be a basis of U and let v1, v2, v3, v4, v5 be a basis of V .
Since U + V = R8, we have that any vector in R8 can be expressed as a sum of a vector in U

and a vector in V . Therefore, any vector in R8 can be expressed as a linear combination of the set
{u1, u2, u3, v1, v2, v3, v4, v5}. In other words, this set spans R8. Since this set spans R8 and has size equal to
the dimension of R8, it follows that it is a basis of R8, and therefore linearly independent.

Any vector w ∈ U ∩ V can be expressed as a linear combination
∑3

i=1 aiui and
∑5

j=1 bjvj since the ui
and vj are bases of theri respective spaces.

It follows that
∑3

i=1 aiui−
∑5

j=1 bjvj = 0. By the linear independence of these 8 vectors, all of the scalar
coefficients are 0 and therefore w = 0. (RP)

Problem 4.3. 1. The complex numbers C can be considered as a vector space over the real numbers R.
What is its dimension as a real vector space?

2. Similarly, any complex vector space V can be considered as a real vector space V − by only allowing
multiplication by real scalars. If the complex vector space V is finite dimensional of dimension d, what
dimension is the real vector space V −?

Solution. 1. C has dimension 2 as a vector space. We will show this by showing {1, i} is a basis.
Any complex number can by definition be written as a+ bi for a, b ∈ R, so this set spans C.
Any linear combination a+ bi is equal to 0 iff the real and imaginary parts are equal to 0, which implies

a = b = 0 and therefore they are linearly independent.
2. Let S = {v1, . . . , vn{ be a basis of V .
We will show that the vectors S− = {v1, . . . , vn, i · v1, . . . , i · vn} are a basis of V −, and as a result show

that it has dimension 2d.
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Any vector v ∈ V can be expressed as a sum

v =

d∑
k=1

(ak + bki)vk

for ak, bk ∈ R by definition. However, V and V − are the same as sets.
It follows by the distributivitiy of multiplication by scalars that

v =

d∑
k=1

akvk + bk(i · vk)

so V − is spanned by S−.
Now assume

∑d
k=1 akvk + bk(i · vk) = 0 for some scalars ak, bk ∈ R.

We can use distributivity of multiplication by scalars to find that this is equivalent to
∑d

k=1(ak+bki)vk = 0
in V . However, since S is linearly independent, we have ak+bki = 0 for every k. This in turn implies ak, bk = 0
for every k and so S− is linearly independent as well. (RP)
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