Homework \#11

Math 25a
Due: November 30th, 2016

Guidelines:

- You must type up your solutions to this assignment in $\mathrm{A}_{\mathrm{A}} \mathrm{EX}$. There's a template available on the course website.
- This homework is divided into four parts. You will turn each part in to a separate CA's mailbox on the second floor of the science center. So, be sure to do the parts on separate pieces of paper.
- If your submission to any particular CA takes multiple pages, then staple them together. If you don't own one (though you should), a stapler is available in the Cabot Library in the Science Center.
- Be sure to put your name at the top of each part, so that we know who to score!
- If you collaborate with other students, please announce that somewhere (ideally: next to the problems you collaborated on) so that we don't get suspicious of hyper-similar answers.

Failure to meet these guidelines may result in loss of points. (Staple your pages!)

1 For submission to Thayer Anderson

Problem 1.1. Prove there does not exist an operator $f: \mathbb{R}^{7} \rightarrow \mathbb{R}^{7}$ such that $f^{2}+f+1$ is nilpotent.
Problem 1.2. Suppose V is a real vector space and $f: V \rightarrow V$ is an operator. Suppose there exist $b, c \in \mathbb{R}$ such that $f^{2}+b f+c=0$. Prove that f has an eigenvalue if and only if $b^{2} \geq 4 c$.

Problem 1.3. Suppose V is a finite-dimensional real vector space and $f: V \rightarrow V$ is a linear operator. Show that the following are equivalent:

1. All the eigenvalues of $f_{\mathbb{C}}$ are real.
2. There exists a basis of V with respect to which f has an upper-triangular matrix.
3. There exists a basis of V consisting of generalized eigenvectors of f.

Problem 1.4. Throughout, let V denote a real vector space with an operator $f: V \rightarrow V$.

1. Suppose f has no eigenvalues. Conclude that $\operatorname{det} f>0$.
2. Suppose $\operatorname{dim} V$ is even and that $\operatorname{det} f<0$. Show f has at least two distinct eigenvalues.

2 For submission to Davis Lazowski

Problem 2.1. Give an example of an operator on a finite-dimensional real inner product space that admits an invariant subspace whose orthogonal complement is not invariant.

Problem 2.2. Let e_{1}, \ldots, e_{n} be an orthonormal basis for an inner product space V, and let $f: V \rightarrow V$ be any linear operator. Show that the sum

$$
\left\|f e_{1}\right\|^{2}+\cdots+\left\|f e_{n}\right\|^{2}
$$

is independent of the choice of basis.
Problem 2.3. Let V be an inner product space, and consider the vector space $\mathcal{L}(V, V)$ of operators on V. Show that

$$
\langle f, g\rangle=\operatorname{tr}\left(f \circ g^{*}\right)
$$

defines an inner product on $\mathcal{L}(V, V)$.
Problem 2.4. Suppose V is a real vector space and that $J: V \rightarrow V$ is a real linear operator satisfying $J^{2}=-1$. Define complex scalar multiplication on V as follows: for $a, b \in \mathbb{R}$, set

$$
(a+b i) v=a v+b J v
$$

1. Show that this complex scalar multiplication and V 's usual addition makes V into a complex vector space.
2. Show that the dimension of V as a complex vector space is half the dimension of V as a real vector space.

3 For submission to Handong Park

Problem 3.1. Suppose V is a real vector space and $f: V \rightarrow V$ has no eigenvalues. Show that every invariant subspace has even dimension.

Problem 3.2. Suppose that V is a real inner product space and that $f: V \rightarrow V$ is self-adjoint.

1. Show that $V_{\mathbb{C}}$ is a complex inner product space with inner product

$$
\langle u+i v, x+i y\rangle_{\mathbb{C}}=\langle u, x\rangle+\langle v, y\rangle+(\langle v, x\rangle-\langle u, y\rangle) i .
$$

2. Show that $f_{\mathbb{C}}$ is a self-adjoint operator on the inner product space $V_{\mathbb{C}}$.
3. Use complexification (and the previous two parts) to conclude the real spectral theorem (for self-adjoint real operators) from the complex spectral theorem (for normal complex operators).

Problem 3.3. Suppose V is an inner product space and that $f: V \rightarrow V$ is an operator satisfying the hyponormality condition

$$
\left\|f^{*} v\right\| \leq\|f v\| .
$$

Show that if V is finite-dimensional then f is automatically normal (i.e., the "inequality" is actually always an equality).

4 For submission to Rohil Prasad

Problem 4.1. Let $V_{n}=\operatorname{span}\{1, \cos x, \ldots, \cos n x, \sin x, \ldots, \sin n x\}$ be the vector space of functions considered over the previous few assignments, and let $D: V_{n} \rightarrow V_{n}$ be the differentiation operator on V_{n}. Having previously concluded that D was normal, find a basis for V_{n} such that the matrix presentation of D has the form guaranteed by Axler 9.34.

Problem 4.2. Suppose V is an inner product space and that $f: V \rightarrow V$ is an operator. Prove first that $\operatorname{det} f^{*}=\overline{\operatorname{det} f}$, then conclude

$$
\operatorname{det} \sqrt{f^{*} f}=|\operatorname{det} f| .
$$

Problem 4.3. 1. Give an example of a real vector space V and an operator $f: V \rightarrow V$ such that $\operatorname{tr}\left(f^{2}\right)<0$.
2. Suppose that V is a real vector space and that $f: V \rightarrow V$ is an operator admitting a basis of eigenvectors. Show that $\operatorname{tr}\left(f^{2}\right) \geq 0$.

Problem 4.4. Suppose V is a real vector space with $\operatorname{dim} V=n$ and $f: V \rightarrow V$ is such that ker $f^{\circ(n-1)} \neq$ ker $f^{\circ(n-2)}$. Prove that f has at most two distinct eigenvalues and that $f_{\mathbb{C}}$ has no nonreal eigenvalues.

