Homework \#10

Math 25a
Due: November 16th, 2016

Guidelines:

- You must type up your solutions to this assignment in $\mathrm{A}^{A} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$. There's a template available on the course website.
- This homework is divided into four parts. You will turn each part in to a separate CA's mailbox on the second floor of the science center. So, be sure to do the parts on separate pieces of paper.
- If your submission to any particular CA takes multiple pages, then staple them together. If you don't own one (though you should), a stapler is available in the Cabot Library in the Science Center.
- Be sure to put your name at the top of each part, so that we know who to score!
- If you collaborate with other students, please announce that somewhere (ideally: next to the problems you collaborated on) so that we don't get suspicious of hyper-similar answers.

Failure to meet these guidelines may result in loss of points. (Staple your pages!)

1 For submission to Thayer Anderson

Problem 1.1. Consider the matrix

$$
M=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 4 & 1
\end{array}\right) .
$$

Compute a square root of M.
Problem 1.2. Prove or give a counterexample: for V a complex vector space, $f: V \rightarrow V$ a linear operator, and $n=\operatorname{dim} V<\infty$, the operator $f^{\circ n}$ is diagonalizable.

Problem 1.3. Suppose $f: V \rightarrow V$ is a linear operator on a finite-dimensional complex vector space, and let $v \in V$ be a vector. Prove that there exists a unique monic polynomial p of smallest degree such that $p(f)(v)=0$. Then, prove that this $p(z)$ divides the minimal polynomial of f.

2 For submission to Davis Lazowski

Problem 2.1. Let $f: V \rightarrow V$ be a linear operator on a finite-dimensional vector space. Prove that $\operatorname{ker} f^{\circ m}=\operatorname{ker} f^{\circ(m+1)}$ if and only if im $f^{\circ m}=\operatorname{im} f^{\circ(m+1)}$. Conclude that $\operatorname{im} f^{\circ N}$ is stable for $N \gg 0$.

Problem 2.2. Give an example of an operator $f: V \rightarrow V$ on a finite-dimensional real vector space such that 0 is the only eigenvalue of f but f is not nilpotent.

Problem 2.3. Let $f: V \rightarrow V$ be an operator on a finite-dimensional complex vector space. Prove that there exist operators $D, N: V \rightarrow V$ such that D is diagonalizable, N is nilpotent, $f=D+N$, and they satisfy the commutation relation $D N=N D$.
Problem 2.4. Suppose that $f: V \rightarrow V$ has characteristic polynomial

$$
p(z)=4+5 z-6 z^{2}-7 z^{3}+2 z^{4}+z^{5} .
$$

Calculate the minimal polynomial of f. Prove that f^{-1} must exist and calculate its minimal polynomial as well.

3 For submission to Handong Park

Problem 3.1. Suppose A and B are block diagonal matrices of the form

$$
A=\left(\begin{array}{ccc}
A_{1} & & 0 \\
& \ddots & \\
0 & & A_{m}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
B_{1} & & 0 \\
& \ddots & \\
0 & & B_{m}
\end{array}\right)
$$

where A_{j} and B_{j} are of size $n_{j} \times n_{j}$ for $j=1, \ldots, m$. Show that $A B$ is a block diagonal matrix of the form

$$
A B=\left(\begin{array}{ccc}
A_{1} B_{1} & & 0 \\
& \ddots & \\
0 & & A_{m} B_{m}
\end{array}\right)
$$

Problem 3.2. Suppose V is a finite-dimensional complex vector space and $f: V \rightarrow V$ is a linear operator.

1. Prove that V has a basis consisting of eigenvectors of f if and only if every generalized eigenvector of f is a classical eigenvector of f.
2. Prove that V has a basis consisting of eigenvectors of f if and only if the minimal polynomial of f has no repeated zeroes.
Problem 3.3. Suppose V is a finite-dimensional complex vector space and $f: V \rightarrow V$ is a linear operator. Prove that there does not exist a direct sum decomposition of V into two proper invariant subspaces if and only if the minimal polynomial of f is of the form $(z-\lambda)^{\operatorname{dim} V}$ for some $\lambda \in \mathbb{C}$.

Problem 3.4. For coefficients $a_{0}, \ldots, a_{n-1} \in \mathbb{C}$, consider the matrix

$$
\left(\begin{array}{ccccc}
0 & & & & -a_{0} \\
1 & 0 & & & -a_{1} \\
& 1 & \ddots & & -a_{2} \\
& & \ddots & & \vdots \\
& & & 0 & -a_{n-2} \\
& & & 1 & -a_{n-1}
\end{array}\right) .
$$

Calculate the characteristic and minimal polynomials of this matrix.

4 For submission to Rohil Prasad

Problem 4.1. Let $f, g: V \rightarrow V$ be two linear operators related by an isomorphism $h: V \rightarrow V$ via the equation $f=h g h^{-1}$. Relate the generalized eigenspaces for f and g through h. Conclude that f and g have the same eigenvalues with the same algebraic multiplicities (i.e., these are invariants of f and g).

Problem 4.2. Suppose $f: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}$ is such that the eigenvalues of f are 3,5 , and 8 . Prove that

$$
(f-3)^{2}(f-5)^{2}(f-8)^{2}=0
$$

Problem 4.3. Suppose $f: V \rightarrow V$ is invertible. Prove that there exists a polynomial $p(z)$ (dependent upon $f)$ such that $f^{-1}=p(f)$.

