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Mathematical induction

Principle of Mathematical Induction

To prove that P(n) is true for all positive integers n, where P(n) is
a propositional function, we complete two steps:

1 Basis step: We verify that P(1) is true.

2 Inductive step: We show that the conditional statement
P(k)→ P(k + 1) is true for all positive integers k .
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Mathematical induction

To complete the inductive step of a proof using the principle of
mathematical induction, we assume that P(k) is true for an
arbitrary positive integer k and show that under this assumption
P(k + 1) must also be true. The assumption is called the inductive
hypothesis.

Definition

Expressed as a rule of inference, the proof technique of induction
can be stated as

P(1) ∀k(P(k)→ P(k + 1))

∴ ∀nP(n)
.
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Mathematical induction
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Mathematical induction

Why is this a valid proof technique?

Natural numbers are well-ordered : every nonempty subset of N has
a least element. So, suppose we know that P(1) and that
P(k)→ P(k + 1) are true. To show P(n) must be true for all n,
suppose otherwise, that there is some n for which it is false. Take
m to be the smallest such value for which P(m) is false. The value
m cannot be 1, since P(1) is true, and hence m − 1 must be a
positive integer. But then the truth of P(m − 1)→ P(m)
contradicts ¬P(m).
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Examples of mathematical induction

Example

Use mathematical induction to prove this formula for the sum of a
finite number of terms fo a geometric progression with initial term
a and common ratio r :

n∑
j=0

ar j = a + ar + ar2 + · · ·+ arn =
arn+1 − a

r − 1
,

where r 6= 1 and n is a nonnegative integer.
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Examples of mathematical induction

Example

The harmonic numbers Hj are defined by

Hj =
1

1
+

1

2
+ · · ·+ 1

j
.

Use mathematical induction to show that H2n ≥ 1 + n
2 , whenever n

is a nonnegative integer.
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Examples of mathematical induction

Example

Use mathematical induction to show that if S is a finite set with n
elements, where n is a nonnegative integer, then S has 2n subsets.
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Strong induction

In a proof by mathematical induction, the inductive step shows
that if the inductive hypothesis P(k) is true, then P(k + 1) is also
true. In a proof by strong induction, the inductive step shows that
if P(j) is true for all positive integers not exceeding k, then
P(k + 1) is true. That is, for the inductive hypothesis we assume
that P(j) is true for j = 1, 2, . . . , k .

To prove that P(n) is true for all positive integers n, where P(n) is
a propositional function, we complete two steps:

1 Basis step: We verify that the proposition P(1) is true.

2 Inductive step: We show that the conditional statement
(P(1) ∧ · · · ∧ P(k))→ P(k + 1) is true for all positive k .
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Examples of strong induction

Example

Consider a game in which two players take turns removing any
positive number of matches they want from one of two piles of
matches. The player who removes the last match wins the game.
Show that if the two piles contain the same number of matches
initially, the second player can always guarantee a win.
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The well-ordering property

The Well-Ordering Property

Every nonempty set of nonnegative integers has a least element.

Example

In a round-robin tournament, every player plays every other player
exactly once and each match has a winner and a loser. We say
that the players p1, . . . , pm form a cycle if p1 beats p2, . . . , pm−1

beats pm, and pm beats p1. Use the well-ordering principle to show
that if there is a cycle of length m (m ≥ 3) among the players in a
round-robin tournament, there must be a cycle amongst just three
of these players as well.
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The well-ordering property

The Well-Ordering Property
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Prof. Steven Evans Discrete Mathematics



Mathematical Induction
Strong Induction and Well-Ordering

Recursive Definitions and Structural Induction

Recursively defined functions

Definition

We use two steps to define a function with the set of nonnegative
integers as its domain:

1 Basis step: Specify the value of the function at zero.

2 Recursive step: Give a rule for finding its value at an integer
from its values at smaller integers.
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Recursively defined functions

Example

Give a recursive definition of an, where a is a nonzero real number
and n is a nonnegative integer.
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Trees

Definition

A tree is a special type of graph; a graph is made up of vertices
and edges connecting some pairs of vertices.

Rooted trees, which have a distinguished vertex called the root,
can be recursively defined as follows:

1 Basis step: A single vertex r is a rooted tree.

2 Suppose that T1, . . . , Tn are disjoint rooted trees with roots
r1, . . . , rn respectively. Then the graph formed by starting
with a root r , which is not in any of the rooted trees T1, . . . ,
Tn, and adding an edge from r to each of the vertices r1, . . . ,
rn is also a rooted tree.
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Trees

Definition

Extended binary trees can be defined recursively by these steps:

1 Basis step: The empty set is an extended binary tree.

2 Recursive step: If T1 and T2 are disjoint extended binary
trees, there is an extended binary tree denoted by T1 · T2

consisting of a root r together with edges connecting the root
to each of the roots of the left subtree T1 and the right
subtree T2 (when these trees are nonempty).
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Trees

Definition

Full binary trees can be defined recursively by these steps:

1 Basis step: There is a full binary tree consisting only of a
single vertex r .

2 Recursive step: If T1 and T2 are disjoint full binary trees,
there is a full binary tree T1 · T2 consisting of a root r
together with edges connecting the root to each of the roots
of the left subtree T1 and right subtree T2.
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Trees

Definition

We define the height h(T ) of a full binary tree T recursively:

1 Basis step: The height of the full binary tree T consisting of
only a root r is h(T ) = 0.

2 Recursive step: If T1 and T2 are full binary trees, then the full
binary tree T = T1 · T2 has height
h(T ) = 1 + max(h(T1), h(T2)).
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Trees

Remark

Letting n(T ) denote the number of vertices in a full binary tree,
we observe that n(T ) satisfies the following recursive formula:

1 Basis step: The number of vertices n(T ) of the full binary
tree T consisting of only a root r is n(T ) = 1.

2 Recursive step: If T1 and T2 are full binary trees, then the
number of vertices of the full binary tree T = T1 · T2 is
n(T ) = 1 + n(T1) + n(T2).

Theorem

If T is a full binary tree, then n(T ) ≤ 2h(T )+1 − 1.
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