On Beyond Hatcher! Patterns in fairytales

Eric Peterson

November 29, 2012

イロト イヨト イヨト イヨト

Part 1: The geometry of Spec FiniteSpectra

イロン イヨン イヨン イヨン

Summary of Day 2

- $MU_*(-)$ takes values $\mathcal{MU}(-)$ in q.coh. sheaves on \mathcal{M}_{fg} .
- \mathcal{M}_{fg} classifies group structures on the formal affine line $\hat{\mathbb{A}}^1 = \operatorname{Spf} R[\![c_1]\!].$
- *MU* is some fancy ring spectrum as yet to be described.
- The *MU*-Adams spectral sequence transforms statements about *H*^{*}*M*_{fg} into statements about π_{*}S.

|| (同) || (三) (=)

- From here on, pick a prime p and work p-locally.
- Useful in classical group theory: the p-torsion G[p].
- Useful in formal group theory: the *p*-series and *p*-torsion

$$[p]_G(x) = \overbrace{x+_G \cdots +_G x}^{p \text{ times}}, \quad G[p] = \operatorname{Spf} R[[c_1]]/\langle [p]_G(c_1) \rangle.$$

A (1) > (1) > (1)

- From here on, pick a prime p and work p-locally.
- Useful in classical group theory: the p-torsion G[p].
- Useful in formal group theory: the *p*-series and *p*-torsion

$$[p]_G(x) = \overbrace{x+_G \cdots +_G x}^{p \text{ times}}, \quad G[p] = \operatorname{Spf} R[[c_1]]/\langle [p]_G(c_1) \rangle.$$

 $\bullet\,$ Over a field, we can find a change of coordinates γ for which

$$[p]_{\gamma \cdot G}(c_1) = \sum_{q=1}^{\infty} v_q x^{p^q}$$

for some coefficients v_q . This coordinate is *p*-typical.

This buys us a lot.

・ロト ・回ト ・ヨト ・ヨト

This buys us a lot.

• Every *p*-typical curve is the *p*-series of some formal group. So, $A = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$ is a smaller presentation of \mathcal{M}_{fg} . Compare $|v_i| = 2(p^i - 1)$ with $|x_i| = 2i$ in $MU_* = \mathbb{Z}[x_1, x_2, \ldots]$.

| 4 回 2 4 U = 2 4 U =

This buys us a lot.

- Every *p*-typical curve is the *p*-series of some formal group. So, $A = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$ is a smaller presentation of \mathcal{M}_{fg} . Compare $|v_i| = 2(p^i - 1)$ with $|x_i| = 2i$ in $MU_* = \mathbb{Z}[x_1, x_2, \ldots]$.
- The index of the first nonzero v_q is the *height* of G, an isomorphism invariant encoding the size of G[p]. There is a closed substack $\mathcal{M}_{\mathbf{fg}}^{\geq q} = V(p, v_1, \dots, v_{q-1})$ of $\mathcal{M}_{\mathbf{fg}}$.

(本間) (本語) (本語)

This buys us a lot.

- Every *p*-typical curve is the *p*-series of some formal group. So, $A = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$ is a smaller presentation of \mathcal{M}_{fg} . Compare $|v_i| = 2(p^i - 1)$ with $|x_i| = 2i$ in $MU_* = \mathbb{Z}[x_1, x_2, \ldots]$.
- The index of the first nonzero v_q is the *height* of G, an isomorphism invariant encoding the size of G[p]. There is a closed substack $\mathcal{M}_{\mathbf{fg}}^{\geq q} = V(p, v_1, \dots, v_{q-1})$ of $\mathcal{M}_{\mathbf{fg}}$.
- This list is complete: M_{fg} has a unique closed substack of codimension q for each q, each contained in the next.

→ 同 → → 目 → → 目 →

This buys us a lot.

- Every *p*-typical curve is the *p*-series of some formal group. So, $A = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$ is a smaller presentation of \mathcal{M}_{fg} . Compare $|v_i| = 2(p^i - 1)$ with $|x_i| = 2i$ in $MU_* = \mathbb{Z}[x_1, x_2, \ldots]$.
- The index of the first nonzero v_q is the *height* of G, an isomorphism invariant encoding the size of G[p]. There is a closed substack $\mathcal{M}_{\mathbf{fg}}^{\geq q} = V(p, v_1, \dots, v_{q-1})$ of $\mathcal{M}_{\mathbf{fg}}$.
- This list is complete: M_{fg} has a unique closed substack of codimension q for each q, each contained in the next. (Viewed as a descending filtration, this gives the "chromatic spectral sequence" computing H*M_{fg}.)

・ロン ・回と ・ヨン ・ヨン

Hammer (LEFT): If Spec $R_* \to \mathcal{M}_{\mathbf{fg}}$ is flat, then the pullback $MU_*(X) \otimes_{MU_*} R_*$ defines a homology theory.

・ロン ・回 と ・ ヨ と ・ ヨ と

Hammer (LEFT): If Spec $R_* \to \mathcal{M}_{\mathbf{fg}}$ is flat, then the pullback $MU_*(X) \otimes_{MU_*} R_*$ defines a homology theory.

Nails:

 Brown-Peterson theory: The smaller presentation (A, Γ) yields a homology theory BP.

- 4 回 2 - 4 □ 2 - 4 □

Hammer (LEFT): If Spec $R_* \to \mathcal{M}_{\mathbf{fg}}$ is flat, then the pullback $MU_*(X) \otimes_{MU_*} R_*$ defines a homology theory.

Nails:

- Brown-Peterson theory: The smaller presentation (A, Γ) yields a homology theory BP.
- Johnson-Wilson theory: $v_{q-1}^{-1}BP_*/\langle v_q, v_{q+1}, \ldots \rangle$ determines an open substack $\mathcal{M}_{\mathbf{fg}}^{\leq q}$ complementary to $\mathcal{M}_{\mathbf{fg}}^{\geq q}$. This gives a homology theory E(q-1).

イロン イヨン イヨン イヨン

Hammer (LEFT): If Spec $R_* \to \mathcal{M}_{\mathbf{fg}}$ is flat, then the pullback $MU_*(X) \otimes_{MU_*} R_*$ defines a homology theory.

Nails:

- Brown-Peterson theory: The smaller presentation (A, Γ) yields a homology theory BP.
- Johnson-Wilson theory: $v_{q-1}^{-1}BP_*/\langle v_q, v_{q+1}, \ldots \rangle$ determines an open substack $\mathcal{M}_{\mathbf{fg}}^{\leq q}$ complementary to $\mathcal{M}_{\mathbf{fg}}^{\geq q}$. This gives a homology theory E(q-1).
- Coning off each v_i for i < q in E(q) yields the qth Morava K-theory K(q), realizing the relative open M^{=q}_{fg}. Its ground ring is K(q)_{*} = F_p[v[±]_q].

< □ > < @ > < 注 > < 注 > ... 注

Let's mimic the ideals $I_q = \langle p, v_1, \dots, v_{q-1} \rangle$ of BP_* for *p*-local spectra. A full subcategory $\mathbf{C} \subseteq \mathbf{FiniteSpectra}$ is...

• ... *thick* if it's closed under weak equivalences, retracts, and cofiber sequences.

(4月) (4日) (4日)

Let's mimic the ideals $I_q = \langle p, v_1, \dots, v_{q-1} \rangle$ of BP_* for *p*-local spectra. A full subcategory $\mathbf{C} \subseteq \mathbf{FiniteSpectra}$ is...

- ... *thick* if it's closed under weak equivalences, retracts, and cofiber sequences.
- ... an *ideal* if $x \land y$ is in **C** for each $x \in$ **FiniteSpectra** and $y \in$ **C**.

||▲ 同 ト || 三 ト || 三 ト

Let's mimic the ideals $I_q = \langle p, v_1, \dots, v_{q-1} \rangle$ of BP_* for *p*-local spectra. A full subcategory $\mathbf{C} \subseteq \mathbf{FiniteSpectra}$ is...

- ... *thick* if it's closed under weak equivalences, retracts, and cofiber sequences.
- ... an *ideal* if $x \land y$ is in **C** for each $x \in$ **FiniteSpectra** and $y \in$ **C**.
- ... a prime ideal if x ∧ y ∈ C forces at least one of x or y to lie in C.

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

Let's mimic the ideals $I_q = \langle p, v_1, \dots, v_{q-1} \rangle$ of BP_* for *p*-local spectra. A full subcategory $\mathbf{C} \subseteq \mathbf{FiniteSpectra}$ is...

- ... *thick* if it's closed under weak equivalences, retracts, and cofiber sequences.
- ... an *ideal* if $x \wedge y$ is in **C** for each $x \in$ **FiniteSpectra** and $y \in$ **C**.
- ... a prime ideal if $x \land y \in \mathbf{C}$ forces at least one of x or y to lie in \mathbf{C} .

Define the geometric space of **FiniteSpectra** to be its collection of thick prime ideals.

イロト イヨト イヨト イヨト

Spec FiniteSpectra

 K(q)_{*} is a graded field. This means K(q)_{*}(−) is a ⊗-functor from FiniteSpectra to graded vector spaces over K(q)_{*}.

Spec FiniteSpectra

- K(q)_{*} is a graded field. This means K(q)_{*}(−) is a ⊗-functor from FiniteSpectra to graded vector spaces over K(q)_{*}.
- The K(q)-acyclics give a thick prime ideal C_q .

Spec FiniteSpectra

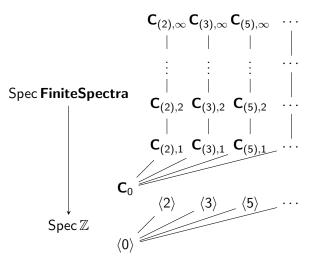
- K(q)_{*} is a graded field. This means K(q)_{*}(−) is a ⊗-functor from FiniteSpectra to graded vector spaces over K(q)_{*}.
- The K(q)-acyclics give a thick prime ideal C_q .
- There is a proper inclusion C_{q+1} ⊊ C_q and this is all such thick prime ideals.

This lets us draw a picture...

(4月) (4日) (4日)

Geometry of Spec FiniteSpectra Extrapolation

Spec FiniteSpectra



Part 2: Extrapolation

▲口 → ▲圖 → ▲ 国 → ▲ 国 → -

Multi-tasking

How do we build cohomology theories which detect information about more than one of these points at a time?

- 4 回 2 - 4 □ 2 - 4 □

How do we build cohomology theories which detect information about more than one of these points at a time?

- Each $C_{(q),p}$ corresponds to the Morava K-theory K(q).
- The open $C_{(< q+1),p}$ corresponds to Johnson-Wilson theory E(q). This corresponds to a "vertical" generalization.

(本間) (本語) (本語)

How do we build cohomology theories which detect information about more than one of these points at a time?

- Each $C_{(q),p}$ corresponds to the Morava K-theory K(q).
- The open $C_{(< q+1),p}$ corresponds to Johnson-Wilson theory E(q). This corresponds to a "vertical" generalization.
- There are (2-periodic) equivalences $KU_p^{\wedge} \simeq E_1$ and $KU/p \simeq K(1)$. This is a "horizontal" generalization.

・ロン ・回と ・ヨン・

How do we build cohomology theories which detect information about more than one of these points at a time?

- Each $C_{(q),p}$ corresponds to the Morava K-theory K(q).
- The open $C_{(< q+1),p}$ corresponds to Johnson-Wilson theory E(q). This corresponds to a "vertical" generalization.
- There are (2-periodic) equivalences $KU_p^{\wedge} \simeq E_1$ and $KU/p \simeq K(1)$. This is a "horizontal" generalization.
- What other horizontal generalizations can we find?

・ロン ・回 と ・ ヨ と ・ ヨ と

• The completion of a 1-dimensional abelian variety at its identity gives a formal group. Elliptic curves are examples of such things, and their formal groups are of height 1 or 2.

・ 同・ ・ ヨ・

- ∢ ⊒ →

- The completion of a 1-dimensional abelian variety at its identity gives a formal group. Elliptic curves are examples of such things, and their formal groups are of height 1 or 2.
- There is a moduli \mathcal{M}_{ell} and a map $\mathcal{M}_{ell} \to \mathcal{M}_{fg}$, but the source is not affine.

||▲ 同 ト || 三 ト || 三 ト

- The completion of a 1-dimensional abelian variety at its identity gives a formal group. Elliptic curves are examples of such things, and their formal groups are of height 1 or 2.
- There is a moduli \mathcal{M}_{ell} and a map $\mathcal{M}_{ell} \to \mathcal{M}_{fg}$, but the source is not affine.
- Solution: study the problem locally and define a sheaf of ring spectra on M_{ell}. Its global sections is TMF, and it has the property L_{K(2)} TMF ≃ V_{x∈M^{ss}_{ell}} E₂.

・ロン ・回 と ・ ヨ と ・ ヨ と

- The completion of a 1-dimensional abelian variety at its identity gives a formal group. Elliptic curves are examples of such things, and their formal groups are of height 1 or 2.
- There is a moduli \mathcal{M}_{ell} and a map $\mathcal{M}_{ell} \to \mathcal{M}_{fg}$, but the source is not affine.
- Solution: study the problem locally and define a sheaf of ring spectra on M_{ell}. Its global sections is TMF, and it has the property L_{K(2)} TMF ≃ V_{x∈M^{ss}_{ell}} E₂.
- Question: What next?

・ロン ・回 と ・ ヨ と ・ ヨ と

- $H\mathbb{F}_2$ is complex oriented with formal group law $x +_{G_{H\mathbb{F}_2}} y = x + y$ over \mathbb{F}_2 .
- So, think of Spec(HF₂)_{*}HF₂ as "automorphisms of G_{HF₂}," which are power series ξ(t) with ξ(s + t) = ξ(s) + ξ(t).

- 4 同 2 4 日 2 4 日 2

- $H\mathbb{F}_2$ is complex oriented with formal group law $x +_{G_{H\mathbb{F}_2}} y = x + y$ over \mathbb{F}_2 .
- So, think of Spec(HF₂)_{*}HF₂ as "automorphisms of G_{HF₂}," which are power series ξ(t) with ξ(s + t) = ξ(s) + ξ(t).
- These must be of the form $\xi(s) = \sum_{n=0}^{\infty} \xi_n s^{2^n}$

- 4 回 2 - 4 □ 2 - 4 □

- $H\mathbb{F}_2$ is complex oriented with formal group law $x +_{G_{H\mathbb{F}_2}} y = x + y$ over \mathbb{F}_2 .
- So, think of Spec(HF₂)_{*}HF₂ as "automorphisms of G_{HF₂}," which are power series ξ(t) with ξ(s + t) = ξ(s) + ξ(t).
- These must be of the form $\xi(s) = \sum_{n=0}^{\infty} \xi_n s^{2^n}$, which compose like

$$\begin{split} \xi(\zeta(s)) &= \sum_{i=0}^{\infty} \xi_i \left(\sum_{j=0}^{\infty} \zeta_j s^{2^j} \right)^{2^i} = \sum_{i=0}^{\infty} \xi_i \sum_{j=0}^{\infty} \zeta_j^{2^i} s^{2^{i+j}} \\ &= \sum_{n=0}^{\infty} \left(\sum_{i=0}^n \xi_i \zeta_{n-i}^{2^i} \right) s^{2^n}. \end{split}$$

• Let's filter the Steenrod algebra. There are two extremes: $\mathcal{H}\mathbb{F}_2(\mathbb{S}) = \mathbb{F}_2$ and $\mathcal{H}\mathbb{F}_2(\mathcal{H}\mathbb{F}_2) = \mathcal{A}_*$.

- - 4 回 ト - 4 回 ト

- Let's filter the Steenrod algebra. There are two extremes: $\mathcal{HF}_2(\mathbb{S}) = \mathbb{F}_2$ and $\mathcal{HF}_2(\mathcal{HF}_2) = \mathcal{A}_*$.
- Filter the Steenrod algebra by power series length.

$$egin{aligned} \mathcal{A}(0) &= \mathcal{A}/\langle \xi_1^2, \xi_2, \xi_3, \ldots
angle, \ \mathcal{A}(1) &= \mathcal{A}/\langle \xi_1^4, \xi_2^2, \xi_3, \ldots
angle, \ \mathcal{A}(2) &= \mathcal{A}/\langle \xi_1^8, \xi_2^4, \xi_3^2, \xi_4, \ldots
angle. \end{aligned}$$

A (1) > (1) > (1)

- Let's filter the Steenrod algebra. There are two extremes: $\mathcal{HF}_2(\mathbb{S}) = \mathbb{F}_2$ and $\mathcal{HF}_2(\mathcal{HF}_2) = \mathcal{A}_*$.
- Filter the Steenrod algebra by power series length.

$$egin{aligned} \mathcal{A}(0) &= \mathcal{A}/\langle \xi_1^2, \xi_2, \xi_3, \ldots
angle, \ \mathcal{A}(1) &= \mathcal{A}/\langle \xi_1^4, \xi_2^2, \xi_3, \ldots
angle, \ \mathcal{A}(2) &= \mathcal{A}/\langle \xi_1^8, \xi_2^4, \xi_3^2, \xi_4, \ldots
angle. \end{aligned}$$

• There are spectra X_q with $(H\mathbb{F}_2)_*X_q = \mathcal{A}\Box_{\mathcal{A}(q)}\mathbb{F}_2$:

$$X_0 = H\mathbb{Z}, \qquad X_1 = kO, \qquad X_2 = tmf.$$

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

- Let's filter the Steenrod algebra. There are two extremes: $\mathcal{HF}_2(\mathbb{S}) = \mathbb{F}_2$ and $\mathcal{HF}_2(\mathcal{HF}_2) = \mathcal{A}_*$.
- Filter the Steenrod algebra by power series length.

$$egin{aligned} \mathcal{A}(0) &= \mathcal{A}/\langle \xi_1^2, \xi_2, \xi_3, \ldots
angle, \ \mathcal{A}(1) &= \mathcal{A}/\langle \xi_1^4, \xi_2^2, \xi_3, \ldots
angle, \ \mathcal{A}(2) &= \mathcal{A}/\langle \xi_1^8, \xi_2^4, \xi_3^2, \xi_4, \ldots
angle. \end{aligned}$$

• There are spectra X_q with $(H\mathbb{F}_2)_*X_q = \mathcal{A}\Box_{\mathcal{A}(q)}\mathbb{F}_2$:

$$X_0 = H\mathbb{Z}, \qquad X_1 = kO, \qquad X_2 = tmf.$$

• Question: What about $q \ge 3$?

- A 同 ト - A 三 ト - A 三 ト

• The category of manifolds is not closed under limits, like intersection. This can be solved by perturbation, which yields results up to bordism.

・ 同・ ・ ヨ・

- The category of manifolds is not closed under limits, like intersection. This can be solved by perturbation, which yields results up to bordism.
- You can replace *n*-simplices with *n*-manifolds and bounding (n + 1)-chains with bounding (n + 1)-manifolds to build a homology theory *MO*.

・ 同 ト ・ ヨ ト ・ ヨ ト

- The category of manifolds is not closed under limits, like intersection. This can be solved by perturbation, which yields results up to bordism.
- You can replace *n*-simplices with *n*-manifolds and bounding (n + 1)-chains with bounding (n + 1)-manifolds to build a homology theory *MO*.
- There are variations on this theme for structured manifolds. *MU* is given by manifolds with almost-complex structure.

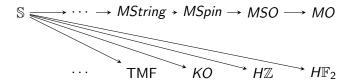
・ 同 ト ・ ヨ ト ・ ヨ ト

• There are variations on this theme for structured manifolds. One extreme is Ω^{fr}_* , represented by S.

 $\mathbb{S} \longrightarrow \cdots \longrightarrow MString * MSpin \longrightarrow MSO \longrightarrow MO$

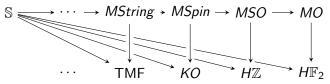
・ロン ・回と ・ヨン ・ヨン

- There are variations on this theme for structured manifolds. One extreme is Ω^{fr}_{*}, represented by S.
- This gives a reinterpretation of the unit map of a ring spectrum.

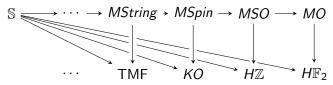


A (1) > A (1) > A

- There are variations on this theme for structured manifolds. One extreme is Ω^{fr}_{*}, represented by S.
- This gives a reinterpretation of the unit map of a ring spectrum.
- "Orientations" are factorizations of the unit.



- There are variations on this theme for structured manifolds. One extreme is Ω^{fr}_* , represented by S.
- This gives a reinterpretation of the unit map of a ring spectrum.
- "Orientations" are factorizations of the unit.



• Question: What comes after *MString*, or after TMF?

The final homework reading is about the "other half" of algebraic geometry in this picture. When E is a ring spectrum, we've used that E_* is a ring, but also E^*X is a ring for any space X. Taking E^*X to be the ring of functions on a scheme turns out to be profitable for many spaces X.

http://math.berkeley.edu/~ericp/