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Geometry of Spec FiniteSpectra

Part 1: The geometry of Spec FiniteSpectra
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Geometry of Spec FiniteSpectra

Summary of Day 2

o MU, (—) takes values MU/(—) in g.coh. sheaves on M.

@ Mg classifies group structures on the formal affine line
A = Spf R[c1].

@ MU is some fancy ring spectrum as yet to be described.

@ The MU-Adams spectral sequence transforms statements
about H* Mig into statements about 7,S.
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Geometry of Spec FiniteSpectra

p-typicality

@ From here on, pick a prime p and work p-locally.
@ Useful in classical group theory: the p-torsion G[p].

@ Useful in formal group theory: the p-series and p-torsion

p times
[Ple(x) =X+ -+ x, G[p] =SpfR[a]/{[plc(c1))-
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Geometry of Spec FiniteSpectra

p-typicality

From here on, pick a prime p and work p-locally.

Useful in classical group theory: the p-torsion G[p].
Useful in formal group theory: the p-series and p-torsion

p times
[Ple(x) =X+ -+ x, G[p] =SpfR[a]/{[plc(c1))-

Over a field, we can find a change of coordinates y for which

[p)-6(c1) Z VxP’

for some coefficients v,. This coordinate is p-typical.
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Geometry of Spec FiniteSpectra

p-typicality

This buys us a lot.
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Geometry of Spec FiniteSpectra

p-typicality

This buys us a lot.

o Every p-typical curve is the p-series of some formal group. So,
A = Z(p)[v1, v, .. ] is a smaller presentation of M.
Compare |v;| = 2(p’ — 1) with |x;| = 2i in
MU* = Z[Xl,XQ, . ]
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Geometry of Spec FiniteSpectra

p-typicality

This buys us a lot.

o Every p-typical curve is the p-series of some formal group. So,
A = Z(p)[v1, v, .. ] is a smaller presentation of M.
Compare |v;| = 2(p’ — 1) with |x;| = 2i in
MU* = Z[Xl,XQ, . ]

@ The index of the first nonzero vq is the height of G, an
isomorphism invariant encoding the size of G[p]. There is a
closed substack Mfzgq = V(p,v1,...,vg-1) of Mgg.
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Geometry of Spec FiniteSpectra

p-typicality

This buys us a lot.

o Every p-typical curve is the p-series of some formal group. So,
A = Z(p)[v1, v, .. ] is a smaller presentation of M.
Compare |v;| = 2(p’ — 1) with |x;| = 2i in
MU* = Z[Xl,XQ, . ]

@ The index of the first nonzero vq is the height of G, an
isomorphism invariant encoding the size of G[p]. There is a
closed substack Mfzgq = V(p,v1,...,vg-1) of Mgg.

@ This list is complete: Mg has a unique closed substack of
codimension g for each g, each contained in the next.
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Geometry of Spec FiniteSpectra

p-typicality

This buys us a lot.

o Every p-typical curve is the p-series of some formal group. So,
A = Z(p)[v1, v, .. ] is a smaller presentation of M.
Compare |v;| = 2(p’ — 1) with |x;| = 2i in
MU* = Z[Xl,XQ, . ]

@ The index of the first nonzero vq is the height of G, an
isomorphism invariant encoding the size of G[p]. There is a
closed substack Mfzgq = V(p,v1,...,vg-1) of Mgg.

@ This list is complete: Mg has a unique closed substack of
codimension g for each g, each contained in the next.
(Viewed as a descending filtration, this gives the “chromatic
spectral sequence” computing H* Mgg.)
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Geometry of Spec FiniteSpectra

Spectral realizations

Hammer (LEFT): If Spec R, — Mg is flat, then the pullback
MU, (X) @pmu, R« defines a homology theory.
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Spectral realizations

Hammer (LEFT): If Spec R, — Mg is flat, then the pullback
MU, (X) @pmu, R« defines a homology theory.

Nails:

@ Brown-Peterson theory: The smaller presentation (A,I) yields
a homology theory BP.
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Spectral realizations

Hammer (LEFT): If Spec R, — Mg is flat, then the pullback
MU, (X) @pmu, R« defines a homology theory.

Nails:

@ Brown-Peterson theory: The smaller presentation (A,I) yields
a homology theory BP.

@ Johnson-Wilson theory: v;llBP*/<vq, Vg+1,- . .) determines

an open substack Mfgq complementary to Mfzgq. This gives a
homology theory E(q — 1).

Eric Peterson On Beyond Hatcher!



Geometry of Spec FiniteSpectra

Spectral realizations

Hammer (LEFT): If Spec R, — Mg is flat, then the pullback
MU, (X) @pmu, R« defines a homology theory.

Nails:

@ Brown-Peterson theory: The smaller presentation (A,I) yields
a homology theory BP.

@ Johnson-Wilson theory: v;llBP*/<vq, Vg+1,- . .) determines

an open substack Mfgq complementary to Mfzgq. This gives a
homology theory E(q — 1).

e Coning off each v; for i < g in E(q) yields the gth Morava
K-theory K(gq), realizing the relative open Mf:gq. Its ground

ring is K(q). = Fplv].
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Geometry of Spec FiniteSpectra

The spectrum of a monoidal category

Let's mimic the ideals I, = (p, v1,. .., vg—1) of BP; for p-local
spectra. A full subcategory C C FiniteSpectra is...

@ ... thick if it's closed under weak equivalences, retracts, and
cofiber sequences.
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yeC.
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The spectrum of a monoidal category

Let's mimic the ideals I, = (p, v1,. .., vg—1) of BP; for p-local
spectra. A full subcategory C C FiniteSpectra is...

@ ... thick if it's closed under weak equivalences, retracts, and
cofiber sequences.

@ ... an ideal if x Ay is in C for each x € FiniteSpectra and
yeC.

@ ... a prime ideal if x Ay € C forces at least one of x or y to
lie in C.
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Geometry of Spec FiniteSpectra

The spectrum of a monoidal category

Let's mimic the ideals I, = (p, v1,. .., vg—1) of BP; for p-local
spectra. A full subcategory C C FiniteSpectra is...

@ ... thick if it's closed under weak equivalences, retracts, and
cofiber sequences.

@ ... an ideal if x Ay is in C for each x € FiniteSpectra and
yeC.
@ ... a prime ideal if x Ay € C forces at least one of x or y to
lie in C.
Define the geometric space of FiniteSpectra to be its collection of
thick prime ideals.
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Geometry of Spec FiniteSpectra

Spec FiniteSpectra

e K(q)« is a graded field. This means K(q).(—) is a ®-functor
from FiniteSpectra to graded vector spaces over K(q)..
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Geometry of Spec FiniteSpectra

Spec FiniteSpectra

e K(q)« is a graded field. This means K(q).(—) is a ®-functor
from FiniteSpectra to graded vector spaces over K(q)..

e The K(qg)-acyclics give a thick prime ideal C,.
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Geometry of Spec FiniteSpectra

Spec FiniteSpectra

e K(q)« is a graded field. This means K(q).(—) is a ®-functor
from FiniteSpectra to graded vector spaces over K(q)..

e The K(qg)-acyclics give a thick prime ideal C,.

@ There is a proper inclusion Cq11 C C4 and this is all such
thick prime ideals.

This lets us draw a picture...
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Geometry of Spec FiniteSpectra

Spec FiniteSpectra

Spec FiniteSpectra
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Extrapolation

Part 2: Extrapolation
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Extrapolation

Multi-tasking

How do we build cohomology theories which detect information
about more than one of these points at a time?
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Extrapolation

Multi-tasking

How do we build cohomology theories which detect information
about more than one of these points at a time?

e Each (), corresponds to the Morava K-theory K(q).

@ The open (41, corresponds to Johnson-Wilson theory
E(q). This corresponds to a “vertical” generalization.

Eric Peterson On Beyond Hatcher!



Extrapolation

Multi-tasking

How do we build cohomology theories which detect information
about more than one of these points at a time?

e Each (), corresponds to the Morava K-theory K(q).

@ The open (41, corresponds to Johnson-Wilson theory
E(q). This corresponds to a “vertical” generalization.

@ There are (2-periodic) equivalences KUJ' ~ E; and
KU/p ~ K(1). This is a “horizontal” generalization.
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Extrapolation

Multi-tasking

How do we build cohomology theories which detect information
about more than one of these points at a time?

e Each (), corresponds to the Morava K-theory K(q).

@ The open (41, corresponds to Johnson-Wilson theory
E(q). This corresponds to a “vertical” generalization.

@ There are (2-periodic) equivalences KUJ' ~ E; and
KU/p ~ K(1). This is a “horizontal” generalization.

@ What other horizontal generalizations can we find?
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Extrapolation

@ The completion of a 1-dimensional abelian variety at its
identity gives a formal group. Elliptic curves are examples of
such things, and their formal groups are of height 1 or 2.
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Extrapolation

@ The completion of a 1-dimensional abelian variety at its
identity gives a formal group. Elliptic curves are examples of
such things, and their formal groups are of height 1 or 2.

@ There is a moduli Mgy and a map Mgy — Mg, but the
source is not affine.
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Extrapolation

@ The completion of a 1-dimensional abelian variety at its
identity gives a formal group. Elliptic curves are examples of
such things, and their formal groups are of height 1 or 2.

@ There is a moduli Mgy and a map Mgy — Mg, but the
source is not affine.

@ Solution: study the problem locally and define a sheaf of ring
spectra on Mgy. Its global sections is TMF, and it has the
property Ly o) TMF ~ \/XGMZﬁ E;.
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Extrapolation

@ The completion of a 1-dimensional abelian variety at its
identity gives a formal group. Elliptic curves are examples of
such things, and their formal groups are of height 1 or 2.

@ There is a moduli Mgy and a map Mgy — Mg, but the
source is not affine.

@ Solution: study the problem locally and define a sheaf of ring
spectra on Mgy. Its global sections is TMF, and it has the
property Ly o) TMF ~ \/XGMZﬁ E;.

@ Question: What next?
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Extrapolation

The Steenrod algebra

@ HF5 is complex oriented with formal group law
X +Gyp, ¥ = X+ y over Fs.

@ So, think of Spec(HF2).HF; as “automorphisms of Gyg,,"
which are power series £(t) with &(s + t) = £(s) + &(¢).
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Extrapolation
The Steenrod algebra

@ HF5 is complex oriented with formal group law
X +Gyp, ¥ = X+ y over Fs.

@ So, think of Spec(HF2).HF; as “automorphisms of Gyg,,"
which are power series £(t) with &(s + t) = £(s) + &(¢).

o These must be of the form &(s) = Y00, &,5%"
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Extrapolation
The Steenrod algebra

@ HF5 is complex oriented with formal group law
X +Gyp, ¥ = X+ y over Fs.

@ So, think of Spec(HF2).HF3 as “automorphisms of Gyr,,
which are power series £(t) with &(s + t) = £(s) + &(¢).

o These must be of the form &(s) = Y00, €,52, which
compose like

i

=Y 6| 2G| =dad ¢
i=0 j=0 i=0  j=0
S

Eric Peterson On Beyond Hatcher!



Extrapolation

The Steenrod algebra

@ Let's filter the Steenrod algebra. There are two extremes:
H]FQ(S) =F; and HFQ(HFQ) = A..
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Extrapolation
The Steenrod algebra

@ Let's filter the Steenrod algebra. There are two extremes:
H]FQ(S) =F; and HFQ(HFQ) = A..
@ Filter the Steenrod algebra by power series length.

"4(0) = A/<£%7£27£3a . '>7
"4(1) = A/<§f’§§7§3a . '>a
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Extrapolation
The Steenrod algebra

@ Let's filter the Steenrod algebra. There are two extremes:
H]FQ(S) =F; and HFQ(HFQ) = A..
@ Filter the Steenrod algebra by power series length.

"4(0) = A/<£%7£27£3a . '>7
"4(1) = A/<§f7§%7§31 . '>a

© There are spectra Xy with (HF2).Xq = A 4(q)F2:

Xo = HZ, Xi = kO, Xo = tmf.
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Extrapolation
The Steenrod algebra

@ Let's filter the Steenrod algebra. There are two extremes:
H]FQ(S) =F; and HFQ(HFQ) = A..
@ Filter the Steenrod algebra by power series length.

"4(0) = A/<£%7£27£3a . '>7
"4(1) = A/<§f7§%7§31 . '>a

© There are spectra Xy with (HF2).Xq = A 4(q)F2:
Xo = HZ, X; = kO, X, = tmf.
@ Question: What about g > 37
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Extrapolation

Bordism

@ The category of manifolds is not closed under limits, like
intersection. This can be solved by perturbation, which yields
results up to bordism.
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Extrapolation

Bordism

@ The category of manifolds is not closed under limits, like
intersection. This can be solved by perturbation, which yields
results up to bordism.

@ You can replace n-simplices with n-manifolds and bounding
(n + 1)-chains with bounding (n + 1)-manifolds to build a
homology theory MO.
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Extrapolation

Bordism

@ The category of manifolds is not closed under limits, like
intersection. This can be solved by perturbation, which yields
results up to bordism.

@ You can replace n-simplices with n-manifolds and bounding
(n + 1)-chains with bounding (n + 1)-manifolds to build a
homology theory MO.

@ There are variations on this theme for structured manifolds.
MU is given by manifolds with almost-complex structure.
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Extrapolation

Bordism

@ There are variations on this theme for structured manifolds.
One extreme is Q" represented by S.

S —— -+ — MString > MSpin — MSO — MO
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Extrapolation

Bordism

@ There are variations on this theme for structured manifolds.
One extreme is Q" represented by S.

@ This gives a reinterpretation of the unit map of a ring
spectrum.

S < -+ — MString > MSpin — MSO — MO

TMF KO HZ HF,
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Extrapolation

Bordism

@ There are variations on this theme for structured manifolds.
One extreme is Q" represented by S.
@ This gives a reinterpretation of the unit map of a ring
spectrum.
@ “Orientations” are factorizations of the unit.
S < -+ — MString > MSpin — MSO — MO
S

TMF\‘ KO ™ HZ — HF,
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Extrapolation

Bordism

@ There are variations on this theme for structured manifolds.
One extreme is Q" represented by S.
@ This gives a reinterpretation of the unit map of a ring
spectrum.
@ “Orientations” are factorizations of the unit.
S < -+ — MString > MSpin — MSO — MO
S

TMF\‘ KO ™ HZ — HF,

@ Question: What comes after MString, or after TMF?
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Extrapolation

Homework

The final homework reading is about the “other half” of algebraic
geometry in this picture. When E is a ring spectrum, we've used
that E, is a ring, but also E*X is a ring for any space X. Taking
E*X to be the ring of functions on a scheme turns out to be
profitable for many spaces X.

http://math.berkeley.edu/~ericp/
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