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Summary of Day 2

MU∗(−) takes values MU(−) in q.coh. sheaves on Mfg.

Mfg classifies group structures on the formal affine line

Â1 = Spf RJc1K.

MU is some fancy ring spectrum as yet to be described.

The MU-Adams spectral sequence transforms statements
about H∗Mfg into statements about π∗S.
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p-typicality

From here on, pick a prime p and work p-locally.

Useful in classical group theory: the p-torsion G [p].

Useful in formal group theory: the p-series and p-torsion

[p]G (x) =

p times︷ ︸︸ ︷
x +G · · ·+G x , G [p] = Spf RJc1K/〈[p]G (c1)〉.

Over a field, we can find a change of coordinates γ for which

[p]γ·G (c1) =
∞∑
q=1

vqx
pq

for some coefficients vq. This coordinate is p-typical.
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p-typicality

This buys us a lot.

Every p-typical curve is the p-series of some formal group. So,
A = Z(p)[v1, v2, . . .] is a smaller presentation of Mfg.

Compare |vi | = 2(pi − 1) with |xi | = 2i in
MU∗ = Z[x1, x2, . . .].

The index of the first nonzero vq is the height of G , an
isomorphism invariant encoding the size of G [p]. There is a
closed substack M≥qfg = V (p, v1, . . . , vq−1) of Mfg.

This list is complete: Mfg has a unique closed substack of
codimension q for each q, each contained in the next.
(Viewed as a descending filtration, this gives the “chromatic
spectral sequence” computing H∗Mfg.)
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Spectral realizations

Hammer (LEFT): If SpecR∗ →Mfg is flat, then the pullback
MU∗(X )⊗MU∗ R∗ defines a homology theory.

Nails:

Brown-Peterson theory: The smaller presentation (A, Γ) yields
a homology theory BP.

Johnson-Wilson theory: v−1q−1BP∗/〈vq, vq+1, . . .〉 determines

an open substack M<q
fg complementary to M≥qfg . This gives a

homology theory E (q − 1).

Coning off each vi for i < q in E (q) yields the qth Morava
K -theory K (q), realizing the relative open M=q

fg . Its ground

ring is K (q)∗ = Fp[v±q ].
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The spectrum of a monoidal category

Let’s mimic the ideals Iq = 〈p, v1, . . . , vq−1〉 of BP∗ for p-local
spectra. A full subcategory C ⊆ FiniteSpectra is...

... thick if it’s closed under weak equivalences, retracts, and
cofiber sequences.

... an ideal if x ∧ y is in C for each x ∈ FiniteSpectra and
y ∈ C.

... a prime ideal if x ∧ y ∈ C forces at least one of x or y to
lie in C.

Define the geometric space of FiniteSpectra to be its collection of
thick prime ideals.
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SpecFiniteSpectra

K (q)∗ is a graded field. This means K (q)∗(−) is a ⊗-functor
from FiniteSpectra to graded vector spaces over K (q)∗.

The K (q)-acyclics give a thick prime ideal Cq.

There is a proper inclusion Cq+1 ( Cq and this is all such
thick prime ideals.

This lets us draw a picture...

Eric Peterson On Beyond Hatcher!



Geometry of Spec FiniteSpectra
Extrapolation

SpecFiniteSpectra

K (q)∗ is a graded field. This means K (q)∗(−) is a ⊗-functor
from FiniteSpectra to graded vector spaces over K (q)∗.

The K (q)-acyclics give a thick prime ideal Cq.

There is a proper inclusion Cq+1 ( Cq and this is all such
thick prime ideals.

This lets us draw a picture...

Eric Peterson On Beyond Hatcher!



Geometry of Spec FiniteSpectra
Extrapolation

SpecFiniteSpectra

K (q)∗ is a graded field. This means K (q)∗(−) is a ⊗-functor
from FiniteSpectra to graded vector spaces over K (q)∗.

The K (q)-acyclics give a thick prime ideal Cq.

There is a proper inclusion Cq+1 ( Cq and this is all such
thick prime ideals.

This lets us draw a picture...

Eric Peterson On Beyond Hatcher!



Geometry of Spec FiniteSpectra
Extrapolation

SpecFiniteSpectra

SpecFiniteSpectra

SpecZ
〈0〉

〈2〉 〈3〉 〈5〉 · · ·
C0

C(2),1 C(3),1 C(5),1

C(2),2 C(3),2 C(5),2

...
...

...

C(2),∞C(3),∞C(5),∞

· · ·

· · ·

· · ·

· · ·
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Part 2: Extrapolation
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Multi-tasking

How do we build cohomology theories which detect information
about more than one of these points at a time?

Each C(q),p corresponds to the Morava K -theory K (q).

The open C(<q+1),p corresponds to Johnson-Wilson theory
E (q). This corresponds to a “vertical” generalization.

There are (2-periodic) equivalences KU∧p ' E1 and
KU/p ' K (1). This is a “horizontal” generalization.

What other horizontal generalizations can we find?
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TMF

The completion of a 1-dimensional abelian variety at its
identity gives a formal group. Elliptic curves are examples of
such things, and their formal groups are of height 1 or 2.

There is a moduli Mell and a map Mell →Mfg, but the
source is not affine.

Solution: study the problem locally and define a sheaf of ring
spectra on Mell. Its global sections is TMF, and it has the
property LK(2) TMF '

∨
x∈Mss

ell
E2.

Question: What next?
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The Steenrod algebra

HF2 is complex oriented with formal group law
x +GHF2

y = x + y over F2.

So, think of Spec(HF2)∗HF2 as “automorphisms of GHF2 ,”
which are power series ξ(t) with ξ(s + t) = ξ(s) + ξ(t).

These must be of the form ξ(s) =
∑∞

n=0 ξns
2n , which

compose like

ξ(ζ(s)) =
∞∑
i=0

ξi

 ∞∑
j=0

ζjs
2j

2i

=
∞∑
i=0

ξi

∞∑
j=0

ζ2
i

j s2
i+j

=
∞∑
n=0

(
n∑

i=0

ξiζ
2i
n−i

)
s2

n
.
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The Steenrod algebra

Let’s filter the Steenrod algebra. There are two extremes:
HF2(S) = F2 and HF2(HF2) = A∗.

Filter the Steenrod algebra by power series length.

A(0) = A/〈ξ21 , ξ2, ξ3, . . .〉,
A(1) = A/〈ξ41 , ξ22 , ξ3, . . .〉,
A(2) = A/〈ξ81 , ξ42 , ξ23 , ξ4, . . .〉.

There are spectra Xq with (HF2)∗Xq = A�A(q)F2:

X0 = HZ, X1 = kO, X2 = tmf .

Question: What about q ≥ 3?
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Bordism

The category of manifolds is not closed under limits, like
intersection. This can be solved by perturbation, which yields
results up to bordism.

You can replace n-simplices with n-manifolds and bounding
(n + 1)-chains with bounding (n + 1)-manifolds to build a
homology theory MO.

There are variations on this theme for structured manifolds.
MU is given by manifolds with almost-complex structure.
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Bordism

There are variations on this theme for structured manifolds.
One extreme is Ωfr

∗ , represented by S.

This gives a reinterpretation of the unit map of a ring
spectrum.

“Orientations” are factorizations of the unit.

S · · · MString MSpin MSO MO

· · · TMF KO HZ HF2

Question: What comes after MString , or after TMF?
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Homework

The final homework reading is about the “other half” of algebraic
geometry in this picture. When E is a ring spectrum, we’ve used
that E∗ is a ring, but also E ∗X is a ring for any space X . Taking
E ∗X to be the ring of functions on a scheme turns out to be
profitable for many spaces X .

http://math.berkeley.edu/˜ericp/
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