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@ There is a map
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@ There is a map, which is the fiber of a 2-local fibration
59 £ qgatt I, g2+t

E is for Einhangung, H for the Hopf invariant.
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@ There is a map, which is the fiber of a 2-local fibration
59 £ qgatt I, g2+t

E is for Einhangung, H for the Hopf invariant.

@ Varying g, we get a spectral sequence

Qsl+9252+§2353+--- HQQSQHQQ+15q+1%

INININONS N

Qst Q2§53 Q3s5 ... Qis2al Qatlglatl

converging to m,Q®¥>*S0 = r.S.
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Three basic facts

The goal is to fill this spectral sequence. First: 7,S* is known
from the very first day.

q
7 . W7+*513
6 . w6+*511
5 75 SO
4 . .ﬁ4+*57
3 34088
2 . .ﬁ2+*53
11Z|0|0]|0]|0]| 0/ 0-|mySt

0 1 2 3 4 5 6 P



Three basic facts

Next, cell decomposition shows 7,59 = 0 for p < q:

q

7

0

0 .

. ﬂ,7+*513
. ’7T6+*511
. .ﬂ.5+*59
. .ﬂ4+*57
. ‘7T3+*55

. ‘7T2+*53

'7T1+*51

5

6

p

Eric Peterson On Beyond Hatcher!



Three basic facts

The Hurewicz isomorphism HyS9 = 7,59 fills the diagonal:

q

7

0

0 .

. ﬂ,7+*513
. ’7T6+*511
. .ﬂ.5+*59
. .ﬂ4+*57
. ‘7T3+*55

. .ﬂ2+*53

'7T1+*51
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6
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The orthogonal spectral sequence

@ How can we produce differentials?
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The orthogonal spectral sequence

@ How can we produce differentials?

@ Sparseness is one option.
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The orthogonal spectral sequence

@ How can we produce differentials?
@ Sparseness is one option.

e Finding a map to or from this spectral sequence with a large
image / small cokernel is another.
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The orthogonal spectral sequence

@ How can we produce differentials?
@ Sparseness is one option.

e Finding a map to or from this spectral sequence with a large
image / small cokernel is another. To produce a map to the
EHPSS, we should find a source of maps to 2959. How do
we do that?
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The orthogonal spectral sequence

@ How can we produce differentials?
@ Sparseness is one option.

e Finding a map to or from this spectral sequence with a large
image / small cokernel is another. To produce a map to the
EHPSS, we should find a source of maps to 2959. How do
we do that?

@ One such source is the orthogonal groups.

O(q)

|
Q959
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The orthogonal spectral sequence

@ How can we produce differentials?
@ Sparseness is one option.

e Finding a map to or from this spectral sequence with a large
image / small cokernel is another. To produce a map to the
EHPSS, we should find a source of maps to 2959. How do
we do that?

@ One such source is the orthogonal groups.

O(q) — O(g+1) Sa fiber sequence

| | l

Q959 —— Qa+1ga+l — a+162q+1 fiber sequence
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The orthogonal spectral sequence

@ How can we produce differentials?
@ Sparseness is one option.

e Finding a map to or from this spectral sequence with a large
image / small cokernel is another. To produce a map to the
EHPSS, we should find a source of maps to 2959. How do
we do that?

@ One such source is the orthogonal groups.

RP9-1 RPY 59 cofiber sequence

/ | }

O(q) — O(g+1) Sa fiber sequence

| | l

Q959 —— Qa+1ga+l — a+162q+1 fiber sequence
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The orthogonal spectral sequence

Now, we'll work to understand the d-differential in the orthogonal
spectral sequence.

Sq

/

RP9-1 —— RPY
Sa

/

O(q) — O(q +1).
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The orthogonal spectral sequence

Now, we'll work to understand the d-differential in the orthogonal
spectral sequence.

591 59

N /

RP9-1 —— RPY
0Ss9 S9

N\ /

O(q) — O(q +1).
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The orthogonal spectral sequence

Now, we'll work to understand the d-differential in the orthogonal
spectral sequence.

Sq—l Sq—l Sa
RP9~2 — RP7~! RP9
Qs9 Sqfl Sa

N1 S

O(g—1) — O(q) — O(q +1).
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The orthogonal spectral sequence

Now, we'll work to understand the d-differential in the orthogonal
spectral sequence.

sq-1 Sa-1 Sa
RPq—Z ﬁ RPq_l RPY
QS9 sa-1 Sq

N1 S

O(g—1) — O(q) — O(q +1).

The back maps are dclell and d}).
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Differentials in the EHP spectral sequence

This gives the following differentials.

q

710[0]0]0/|0]0.|2Z: nr .St
6|0|0|0|0|0]|2Z gy SH
5100|002z 7544 S°
410|002z 4 ST
3100z t 34 S®
2101\ 7 . -7r2+*53
11z 0|0]|0]|0]| 0] 0-|mgSt

0 1 2 3 4 5 6 P
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Convergence and stabilization

The first two columns are mostly empty, so convergence is easy.

9+ Z Z/)2
710]0]0]0]0] 0|2z .S
6|0|0|0|0]|0]zZ gy s ST
5/0|0]0]0]|2Z 7544 S°
410(0]0]|Z 4y nST
3100,z 34,88
2 10| Z oS3
11Z|0|0]|0]|0]| 0] 0-|mySt

0 1 2 3 4 5 6 P
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Convergence and stabilization

Freudenthal’s theorem gives a whole stable range.

9+ 7 7]2

710]0]0]0]0] 0|2z .S

6|0|0|0|0|0]|Z|Z/2ne .S

5/0(0|0|0.|2Z|Z/2] -lnrs..S°

4 0 0 0 Z Z/2 “7T4+*57
31002z |Z/2 344 S5
2 0 Z Z/z "7T2+*53

1,Z|[0|0]|0]|0]| 0/ 0-|mySt

0 1 2 3 4 5 6 P
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Convergence and stabilization

There are no differentials entering the p = 2 column.

9.7 7)2 7J2

710]0]0]0]0] 0|2z .S

6 |0|0|0|0|0]|Z|Z/2ne. S

510101 0/|0.|2Z|2/2Z/2 r5.,S°

410100 |2Z|Z/2Z)2] - m4sST

3|0 0|z |zp2z2 7310 S5

2 0 Z Z/z "7T2+*53

1,Z[0|0]|0|0]| 0/ 0-|mySt

0 1 2 3 4 5 6 P
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Truncation

o The p = 3 column is missing £, = 755°.
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Truncation

o The p = 3 column is missing £, = 755°.

@ We can compute 383 by truncating the filtration:

QS! > 0252 - 383

INS N

QSt Q253 Q355

This has the effect of blanking out the EHPSS above g = 3.
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Truncation

o The p = 3 column is missing £, = 755°.

@ We can compute 383 by truncating the filtration:

QS! > 0252 - 383

INS N

QSt Q253 Q355

This has the effect of blanking out the EHPSS above g = 3.

o Generally, truncating above g = @ computes 7, oS®.
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Truncation

So, we blank out above Q = 3...

A+ 7 7ZJ2 7]2

710/0|l0]|0]|o0]| 0|2z n.83
6100 |0|0|0]|Z|Z/2m .S
5100|002z |2/22Z/2r5,,S°
4101|002z |Z/2Z)2] - tmspST
3101 0.2z |Z/2Z)2 344 8°
2o |z lz2 .83
1,Z[0|0]0]|0]| 0/ 0-|mySt

o 1 2 3 4 5 6 P
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Truncation

.. which has no effect at p = 2. So, 71553 = 7)2.

9, Z Z/2 7)2
710[0l0]|0|0]O0]0O} 0
6|0o|o0o|lo|o0o|ofo] o0} o0
5(o0[o0|l0|0|l0] 0|0} 0
aloflolo]o|o|o|o} 0
3100 |2z |zZ/2z0?2 7340 S®
20|z |z2/2\72)2 7--7r2+*53
1/Z[0][0[0] 0| 0] 0-tm.St
o 1 2 3 4 5 6 P
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Stabilization as input

This completes the p = 3 column. What does it converge to?

9, Z Zj22[2 7
710/0l0]0]|o0]| 0|z nm.53
6|l0|0[0]|0]|0]|Z|Z2ne.SM
5(0|0|0] 0|z |Z/2Z/2}rs.5°
4101(10]|0|2z|Z2/21Z)2) -}74.ST
310102z |Z2/2Z)2 P34 SO
210 |z |Z/22Z)2 7~-7r2+*53
1 /20| 0|0] 0| 0] 0-|ry.S

o 1 2 3 4 5 6 P
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Stabilization as input

We have already used the EHPSS to compute 7 1 5S.
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Stabilization as input

We have already used the EHPSS to compute 7 15S. In the other
direction, knowing 7,S can sort out the structure lost by the
associated graded.

| — T

Adams SS: m3S = 7Z/8.



Stabilization as input

This lets us fill out a new ray, ...

94 Z Z/Q Z/2 Z/8

710]0]0]0]0] 0|2z .S

6 |0|0|0|0|0]|Z|Z/2ne. S

5100|002z |2/2Z/2}rs5,.S°
410|010 Z|2/22/2|7/8} w4y S7
3100 |z |z/22z/272/8] 713,55
20|z |z/)2%z02 7oy 53

1,Z[0|0]|0|0]| 0/ 0-|mySt

0 1 2 3 4 5 6 P
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Stabilization as input

... describes a new part of the truncation, ...

G, 7 7J2 7.)2 7.)4
7lo0lo0ojo0]o0o|lo|O]O} 0O
6|0|o0o|l0o|o0o|o0of0o] o} o0
5(0[o0|lo|0|lo]o0]| 0} 0
alofloflo]o|o|o|ot 0
30| o0 zl|zrzrzEl .S
2 o | z]zrelzelzsl | s
1/Z[0|0]|0|0]| 0] 0-tmysSt
o 1 2 3 4 5 6 P
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Stabilization as input

.. and completes the p = 4 column.

9,7 7/27/27/8

710]0]0]0]0] 0|2z .S
6(0|0]0|0]|0]|Z|Z/2ne.S™
5100|010 2Z|Z/2|Z/2 75,.,5°
410|010 Z|2/2Z/2|Z/8 1457
310 |0 |2z|2/22/2\2/8] 7 m3,.5°
2 | o |z z2z2z/a] 2| 7 trs?
1,Z[0|0]|0|0]| 0/ 0-|mySt

o 1 2 3 4 5 6 P
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Serre finiteness

@ This story continues indefinitely, and there is more unexplored
structure in the EHPSS.
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Serre finiteness

@ This story continues indefinitely, and there is more unexplored
structure in the EHPSS.

@ What we have is enough to prove Serre finiteness:

mpS9 is finite, except for m;S9 = Z and Z C 7r4q_152‘7.
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Serre finiteness: the exceptions

There's a Z in the corner...

a4 Z Z/2 Z_/2 Z/S

710/l0|l0|0]|o0]| 0|z n.s13

6|l0|0[0]|0]|0]|Z|Z2nes. S

5100|002z |Z/2|Z/2}rs..S°
410100 |2Z|Z2/2|Z)2|Z)8} 745457
3101 o0 |z |z/2Z/27Z/8] 73,55
20|z |z/21Z2/2|Z/4| 7 | 7 |70y, S3

1 /2[00 |0]| 0] 0] 0-mq.St

0 1 2 3 4 5 6 P
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Serre finiteness: the exceptions

.. and truncating at an even @ loses a d?.

9y Z Z/2 Z/2 Z/4

710lololololololm.se

6|0[0[0| 0| 0|00 lres.S

510[0[0]0] 0] 0| 0 tmse,s°

410|007 |2/2|1Z/2|Z/8 74,5
3101 0.2z |Z/2|Z/2|Z/8| ? -}734.S°
2 | 0| Z |Z/2|Z)2|Z/4| ? | ? -t7mpy.S3

1/Z[0|0|0]| 0] 0| 0-mq.St

0 1 2 3 4 5 6 P



Serre finiteness: the exceptions

In the middle, there are extensions of finite groups.

94 Z Z/Q Z/2 Z/8

710]0]0]0]0] 0|2z .S

6|0 0| 0| 0| 0]|Z|Z/2neSH

510101 01|0.|2Z|2/2|Z/2 75.,S°

4 0 0 0 Z Z/2 Z/2 Z/8‘7T4+*57

310 0.2z |2/2|2/2|2/8] 7 -}734.S°

2 | 0| Z|Z2/2|Z)2\Z/4] ? | 7|7y S3

1,Z[0|0]|0|0]| 0/ 0-|mySt

0 1 2 3 4 5 6 P
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Homework

The homework reading this week details a different computation:
the homotopy of the sphere, lensed through the first Morava
K-theory K(1). This should give you a sense of what the

K-theories are detecting, and is also emblematic a different sort of
computation in homotopy theory.

http://math.berkeley.edu/ericp/
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