On Beyond Hatcher!

Computations in unstable homotopy groups

Eric Peterson

November 15, 2012

Set-up

• There is a map

$$S^q \xrightarrow{E} \Omega S^{q+1}$$

Set-up

• There is a map, which is the fiber of a 2-local fibration

$$S^q \xrightarrow{E} \Omega S^{q+1} \xrightarrow{H} \Omega S^{2q+1}$$
.

E is for *Einhängung*, *H* for the *Hopf invariant*.

Set-up

• There is a map, which is the fiber of a 2-local fibration

$$S^q \xrightarrow{E} \Omega S^{q+1} \xrightarrow{H} \Omega S^{2q+1}$$
.

E is for *Einhängung*, *H* for the *Hopf invariant*.

• Varying q, we get a spectral sequence

converging to $\pi_*\Omega^\infty\Sigma^\infty S^0 = \pi_*\mathbb{S}$.

Three basic facts

The goal is to fill this spectral sequence. First: π_*S^1 is known from the very first day.

Three basic facts

Next, cell decomposition shows $\pi_p S^q = 0$ for p < q:

Three basic facts

The Hurewicz isomorphism $H_qS^q=\pi_qS^q$ fills the diagonal:

• How can we produce differentials?

- How can we produce differentials?
- Sparseness is one option.

- How can we produce differentials?
- Sparseness is one option.
- Finding a map to or from this spectral sequence with a large image / small cokernel is another.

- How can we produce differentials?
- Sparseness is one option.
- Finding a map to or from this spectral sequence with a large image / small cokernel is another. To produce a map to the EHPSS, we should find a source of maps to $\Omega^q S^q$. How do we do that?

- How can we produce differentials?
- Sparseness is one option.
- Finding a map to or from this spectral sequence with a large image / small cokernel is another. To produce a map to the EHPSS, we should find a source of maps to $\Omega^q S^q$. How do we do that?
- One such source is the orthogonal groups.

$$O(q) \ \downarrow \ \Omega^q S^q$$

- How can we produce differentials?
- Sparseness is one option.
- Finding a map to or from this spectral sequence with a large image / small cokernel is another. To produce a map to the EHPSS, we should find a source of maps to $\Omega^q S^q$. How do we do that?
- One such source is the orthogonal groups.

$$O(q) \longrightarrow O(q+1) \longrightarrow S^{q}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega^{q}S^{q} \longrightarrow \Omega^{q+1}S^{q+1} \rightarrow \Omega^{q+1}S^{2q+1}$$

fiber sequence

fiber sequence

- How can we produce differentials?
- Sparseness is one option.
- Finding a map to or from this spectral sequence with a large image / small cokernel is another. To produce a map to the EHPSS, we should find a source of maps to $\Omega^q S^q$. How do we do that?
- One such source is the orthogonal groups.

Now, we'll work to understand the d^1 -differential in the orthogonal spectral sequence.

Now, we'll work to understand the d^1 -differential in the orthogonal spectral sequence.

Now, we'll work to understand the d^1 -differential in the orthogonal spectral sequence.

Now, we'll work to understand the d^1 -differential in the orthogonal spectral sequence.

The back maps are d_{cell}^1 and d_O^1 .

Differentials in the EHP spectral sequence

This gives the following differentials.

Convergence and stabilization

The first two columns are mostly empty, so convergence is easy.

Convergence and stabilization

Freudenthal's theorem gives a whole stable range.

Convergence and stabilization

There are no differentials entering the p = 2 column.

• The p=3 column is missing $E_{3,2}^1=\pi_5S^3$.

- The p=3 column is missing $E_{3,2}^1=\pi_5S^3$.
- We can compute $\pi_*\Omega^3S^3$ by truncating the filtration:

This has the effect of blanking out the EHPSS above q = 3.

- The p=3 column is missing $E_{3,2}^1=\pi_5S^3$.
- We can compute $\pi_*\Omega^3S^3$ by truncating the filtration:

This has the effect of blanking out the EHPSS above q = 3.

ullet Generally, truncating above q=Q computes $\pi_{*+Q}S^Q$.

So, we blank out above Q = 3...

q,	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$					
7	0	0	0	0	0	02.	\mathbb{Z} .	$\pi_{7+*}S^{13}$
6	0	0	0	0	0	$\mathbb{Z}^{^{\prime}}$	$\mathbb{Z}/2$	$\pi_{6+*}S^{11}$
5	0	0	0	02.	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\cdot \pi_{5+*} S^9$
4	0	0	0	$\mathbb{Z}^{^{\prime}}$	$\mathbb{Z}/2$	$\mathbb{Z}/2$		$\cdot \pi_{4+*}S^7$
3	0	02.	\mathbb{Z}	Z/2	$\mathbb{Z}/2$			$\cdot \pi_{3+*} S^5$
2	0	$\mathbb{Z}^{^{\prime}}$	$\mathbb{Z}/2$					$\pi_{2+*}S^3$
1	\mathbb{Z}	0	0	0	0	0	0 ·	$\cdot \pi_{1+*}S^1$
	0	1	2	3	4	5	6	¬p

... which has no effect at p = 2. So, $\pi_5 S^3 = \mathbb{Z}/2$.

This completes the p = 3 column. What does it converge to?

We have already used the EHPSS to compute $\pi_{0,1,2}\mathbb{S}$.

We have already used the EHPSS to compute $\pi_{0,1,2}\mathbb{S}$. In the other direction, knowing $\pi_p\mathbb{S}$ can sort out the structure lost by the associated graded.

Adams SS: $\pi_3 \mathbb{S} = \mathbb{Z}/8$.

This lets us fill out a new ray, ...

... describes a new part of the truncation, ...

... and completes the p = 4 column.

Serre finiteness

• This story continues indefinitely, and there is more unexplored structure in the EHPSS.

Serre finiteness

- This story continues indefinitely, and there is more unexplored structure in the EHPSS.
- What we have is enough to prove Serre finiteness:

$$\pi_p S^q$$
 is finite, except for $\pi_q S^q = \mathbb{Z}$ and $\mathbb{Z} \subseteq \pi_{4q-1} S^{2q}$.

Serre finiteness: the exceptions

There's a \mathbb{Z} in the corner...

Serre finiteness: the exceptions

... and truncating at an even Q loses a d^1 .

Serre finiteness: the exceptions

In the middle, there are extensions of finite groups.

Homework

The homework reading this week details a different computation: the homotopy of the sphere, lensed through the first Morava K-theory K(1). This should give you a sense of what the K-theories are detecting, and is also emblematic a different sort of computation in homotopy theory.

http://math.berkeley.edu/~ericp/