On Beyond Hatcher! Stable homotopy and formal Lie groups

Eric Peterson

November 8, 2012

Eric Peterson On Beyond Hatcher!

・ロト ・回ト ・ヨト

-≣->

Stabilization

• Key ingredient from last time:

$$E_p X = E_{p+1} \Sigma X.$$

・ロト ・回ト ・ヨト ・ヨト

Stabilization

• Key ingredient from last time:

$$E_p X = E_{p+1} \Sigma X.$$

• Freudenthal suspension theorem: for p < 2q - 1,

$$\pi_p S^q = \pi_{p+1} S^{q+1}$$

イロト イヨト イヨト イヨト

Stabilization

• Key ingredient from last time:

$$E_p X = E_{p+1} \Sigma X.$$

• Freudenthal suspension theorem: for p < 2q - 1,

$$\pi_p S^q = \pi_{p+1} S^{q+1}.$$

These limiting groups for q ≫ 0 appear as π_{p−q}S. Also, stable homotopy π_{*} is a homology functor.

イロト イヨト イヨト イヨト

Stabilization

• Key ingredient from last time:

$$E_p X = E_{p+1} \Sigma X.$$

• Freudenthal suspension theorem: for p < 2q - 1,

$$\pi_p S^q = \pi_{p+1} S^{q+1}.$$

- These limiting groups for q ≫ 0 appear as π_{p−q}S. Also, stable homotopy π_{*} is a homology functor.
- General goal for today: study the relation between stable homotopy and more understandable homology theories.

- 4 同 ト - 4 三 ト - 4 三

Twisted suspension

• Select a spherical fibration $S^n \to Y \to X$.

・ロン ・回 と ・ ヨン ・ ヨン

Twisted suspension

- Select a spherical fibration $S^n \to Y \to X$.
- Cone off each fiber to get a disk bundle $D^n \to Y' \to X$.
- Cone off the whole space to get a cone CY.

イロト イヨト イヨト イヨト

Twisted suspension

- Select a spherical fibration $S^n \to Y \to X$.
- Cone off each fiber to get a disk bundle $D^n \to Y' \to X$.
- Cone off the whole space to get a cone CY.
- The Thom space of Y is their gluing:

・ロン ・回と ・ヨン ・ヨン

Twisted suspension

- Select a spherical fibration $S^n \to Y \to X$.
- Cone off each fiber to get a disk bundle $D^n \to Y' \to X$.
- Cone off the whole space to get a cone CY.
- The Thom space of Y is their gluing:

• When $Y = S^n \times X$, $TY = S^{n+1}X$. Otherwise, TY is a *twisted suspension*.

イロト イヨト イヨト イヨト

Generalized homology

• Last time, we defined generalized cohomology:

 $E^n X = [X, \underline{E}_n].$

Generalized homology looks different:

$$E_{-n}X = \pi_0(E \wedge \mathbb{S}^n \wedge X).$$

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

Generalized homology

• Last time, we defined generalized cohomology:

 $E^n X = [X, \underline{E}_n].$

Generalized homology looks different:

$$E_{-n}X = \pi_0(E \wedge \mathbb{S}^n \wedge X).$$

• The operation $-\otimes R$ is a base-change functor; think of $-\wedge E$ similarly.

- 4 同 6 4 日 6 4 日 6

Generalized homology

• Last time, we defined generalized cohomology:

 $E^n X = [X, \underline{E}_n].$

Generalized homology looks different:

$$E_{-n}X = \pi_0(E \wedge \mathbb{S}^n \wedge X).$$

The operation − ⊗ R is a base-change functor; think of − ∧ E similarly. E ∧ Sⁿ ∧ X is a base change of the shift Sⁿ ∧ X to E-coefficients.

- A 同 ト - A 三 ト - A 三 ト

Generalized homology

• Last time, we defined generalized cohomology:

 $E^n X = [X, \underline{E}_n].$

Generalized homology looks different:

$$E_{-n}X = \pi_0(E \wedge \mathbb{S}^n \wedge X).$$

- The operation ⊗ R is a base-change functor; think of ∧ E similarly. E ∧ Sⁿ ∧ X is a base change of the shift Sⁿ ∧ X to E-coefficients.
- Y is said to be *E*-oriented when there is an isomorphism

$$E \wedge TY \simeq E \wedge \mathbb{S}^n \wedge X.$$

E untwists Y, and this is a spectral Thom isomorphism.

Complex bordism, MU

- Sphere bundles are in ample supply: every complex vector bundle *V* on a manifold admits a metric, giving a sphere bundle *SV* and a disk bundle *DV*.
- Again thinking of *E* like a module, *E* is a *ring spectrum* when given a monoid structure

$$E \wedge E \xrightarrow{\mu} E, \ \mathbb{S} \xrightarrow{\eta} E.$$

¹Note: This definition seems to have nothing to do with geometric bordism. That connection will come much, much later.

Complex bordism, MU

- Sphere bundles are in ample supply: every complex vector bundle *V* on a manifold admits a metric, giving a sphere bundle *SV* and a disk bundle *DV*.
- Again thinking of *E* like a module, *E* is a *ring spectrum* when given a monoid structure

$$E \wedge E \xrightarrow{\mu} E, \ \mathbb{S} \xrightarrow{\eta} E.$$

MU is defined to be the universal ring spectrum for which every such sphere bundle is oriented. Every other ring spectrum E which is oriented for complex vector bundles receives a homotopy-unique ring spectrum map $MU \rightarrow E^{1}$.

¹Note: This definition seems to have nothing to do with geometric bordism. That connection will come much, much later.

Part 1: Simplicial algebraic geometry

・ロン ・回 と ・ ヨン ・ ヨン

• When *E* is a ring spectrum, *E*_{*} is a ring and *E*_{*}*X* is an *E*_{*}-module:

$$\mathbb{S}^n \wedge \mathbb{S}^m \xrightarrow{e \wedge x} E \wedge E \wedge X \xrightarrow{\mu \wedge 1} E \wedge X.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

• When *E* is a ring spectrum, *E*_{*} is a ring and *E*_{*}*X* is an *E*_{*}-module:

$$\mathbb{S}^n \wedge \mathbb{S}^m \xrightarrow{e \wedge x} E \wedge E \wedge X \xrightarrow{\mu \wedge 1} E \wedge X.$$

• E_*X an E_* -module

イロト イヨト イヨト イヨト

• When *E* is a ring spectrum, *E*_{*} is a ring and *E*_{*}*X* is an *E*_{*}-module:

$$\mathbb{S}^n \wedge \mathbb{S}^m \xrightarrow{e \wedge x} E \wedge E \wedge X \xrightarrow{\mu \wedge 1} E \wedge X.$$

• E_*X an E_* -module $\leftrightarrow \mathcal{E}(X)$ a quasicoherent sheaf on Spec E_* .

イロト イヨト イヨト イヨト

• When *E* is a ring spectrum, *E*_{*} is a ring and *E*_{*}*X* is an *E*_{*}-module:

$$\mathbb{S}^n \wedge \mathbb{S}^m \xrightarrow{e \wedge x} E \wedge E \wedge X \xrightarrow{\mu \wedge 1} E \wedge X.$$

- E_*X an E_* -module $\leftrightarrow \mathcal{E}(X)$ a quasicoherent sheaf on Spec E_* .
- Problem: (*H*𝔽₂)_{*} = 𝔽₂ and *MU*_{*} = ℤ[*x*₁, *x*₂,...]. These are too small and too large respectively.

What other structure can we write down on homology?

- 4 回 2 - 4 回 2 - 4 回 2

- We used the multiplication $E \wedge E \xrightarrow{\mu} E$ to produce the E_* -action. What use is the unit $\mathbb{S} \xrightarrow{\eta} E$?
- We can build a map

$$E \wedge X \xrightarrow{\simeq} \mathbb{S} \wedge E \wedge X \xrightarrow{\eta \wedge 1 \wedge 1} E \wedge E \wedge X.$$

- We used the multiplication $E \wedge E \xrightarrow{\mu} E$ to produce the E_* -action. What use is the unit $\mathbb{S} \xrightarrow{\eta} E$?
- We can build a map

$$E \wedge X \xrightarrow{\simeq} \mathbb{S} \wedge E \wedge X \xrightarrow{\eta \wedge 1 \wedge 1} E \wedge E \wedge X.$$

With some flatness, this gives

$$E_*X \to \pi_*(E \wedge E \wedge X) \xleftarrow{\cong} E_*E \otimes_{E_*} E_*X.$$

This is some sort of coaction map.

Homology theories are sheaf-valued

Ring spectrum

$$\begin{split} \mathbb{S} \wedge E \xrightarrow{\eta \wedge 1} E \wedge E, \\ E \wedge \mathbb{S} \xrightarrow{1 \wedge \eta} E \wedge E, \\ E \wedge E \xrightarrow{\mu} E, \\ E \wedge \mathbb{S} \wedge E \xrightarrow{1 \wedge \eta \wedge 1} E \wedge E \wedge E, \\ E \wedge E \xrightarrow{\tau} E \wedge E, \end{split}$$

イロト イヨト イヨト イヨト

Homology theories are sheaf-valued

Set
$$A = E_*$$
, $\Gamma = E_*E$

Ring spectrum

$$\begin{split} & \mathbb{S} \wedge E \xrightarrow{\eta \wedge 1} E \wedge E, \qquad A \xrightarrow{\eta_L} \Gamma, \\ & E \wedge \mathbb{S} \xrightarrow{1 \wedge \eta} E \wedge E, \qquad A \xrightarrow{\eta_R} \Gamma, \\ & E \wedge E \xrightarrow{\mu} E, \qquad \Gamma \xrightarrow{\varepsilon} A, \\ & E \wedge \mathbb{S} \wedge E \xrightarrow{1 \wedge \eta \wedge 1} E \wedge E \wedge E, \quad \Gamma \xrightarrow{\Delta} \Gamma \otimes_A \Gamma, \\ & E \wedge E \xrightarrow{\tau} E \wedge E, \qquad \Gamma \xrightarrow{\chi} \Gamma, \end{split}$$

イロト イヨト イヨト イヨト

Set
$$A = E_*$$
, $\Gamma = E_*E$, $X_0 = \operatorname{Spec} A$, and $X_1 = \operatorname{Spec} \Gamma$.

Ring spectrum

$$\begin{split} & \mathbb{S} \wedge E \xrightarrow{\eta \wedge 1} E \wedge E, \qquad A \xrightarrow{\eta_L} \Gamma, \qquad X_0 \xleftarrow{\text{dom}} X_1, \\ & E \wedge \mathbb{S} \xrightarrow{1 \wedge \eta} E \wedge E, \qquad A \xrightarrow{\eta_R} \Gamma, \qquad X_0 \xleftarrow{\text{cod}} X_1, \\ & E \wedge E \xrightarrow{\mu} E, \qquad \Gamma \xrightarrow{\varepsilon} A, \qquad X_1 \xleftarrow{\text{cod}} X_0 \\ & E \wedge \mathbb{S} \wedge E \xrightarrow{1 \wedge \eta \wedge 1} E \wedge E \wedge E, \quad \Gamma \xrightarrow{\Delta} \Gamma \otimes_A \Gamma, \qquad X_1 \xleftarrow{\circ} X_1 \times_{X_0} X_1, \\ & E \wedge E \xrightarrow{\tau} E \wedge E, \qquad \Gamma \xrightarrow{\chi} \Gamma, \qquad X_1 \xleftarrow{(-)^{-1}} X_1. \end{split}$$

イロト イヨト イヨト イヨト

Set
$$A = E_*$$
, $\Gamma = E_*E$, $X_0 = \operatorname{Spec} A$, and $X_1 = \operatorname{Spec} \Gamma$.

Ring spectrum

Groupoid scheme

イロト イヨト イヨト イヨト

$$\begin{split} & \mathbb{S} \wedge E \xrightarrow{\eta \wedge 1} E \wedge E, \qquad A \xrightarrow{\eta_L} \Gamma, \qquad X_0 \xleftarrow{\text{dom}} X_1, \\ & E \wedge \mathbb{S} \xrightarrow{1 \wedge \eta} E \wedge E, \qquad A \xrightarrow{\eta_R} \Gamma, \qquad X_0 \xleftarrow{\text{cod}} X_1, \\ & E \wedge E \xrightarrow{\mu} E, \qquad \Gamma \xrightarrow{\varepsilon} A, \qquad X_1 \xleftarrow{\text{id}} X_0 \\ & E \wedge \mathbb{S} \wedge E \xrightarrow{1 \wedge \eta \wedge 1} E \wedge E \wedge E, \quad \Gamma \xrightarrow{\Delta} \Gamma \otimes_A \Gamma, \qquad X_1 \xleftarrow{\epsilon} X_1 \times_{X_0} X_1, \\ & E \wedge E \xrightarrow{\tau} E \wedge E, \qquad \Gamma \xrightarrow{\chi} \Gamma, \qquad X_1 \xleftarrow{(-)^{-1}} X_1. \end{split}$$

Set
$$A = E_*$$
, $\Gamma = E_*E$, $X_0 = \operatorname{Spec} A$, and $X_1 = \operatorname{Spec} \Gamma$.

Ring spectrum Hopf algebroid Groupoid scheme

$$\begin{split} & \mathbb{S} \wedge E \xrightarrow{\eta \wedge 1} E \wedge E, \qquad A \xrightarrow{\eta_L} \Gamma, \qquad X_0 \xleftarrow{\text{dom}} X_1, \\ & E \wedge \mathbb{S} \xrightarrow{1 \wedge \eta} E \wedge E, \qquad A \xrightarrow{\eta_R} \Gamma, \qquad X_0 \xleftarrow{\text{cod}} X_1, \\ & E \wedge E \xrightarrow{\mu} E, \qquad \Gamma \xrightarrow{\varepsilon} A, \qquad X_1 \xleftarrow{\text{cod}} X_0 \\ & E \wedge \mathbb{S} \wedge E \xrightarrow{1 \wedge \eta \wedge 1} E \wedge E \wedge E, \quad \Gamma \xrightarrow{\Delta} \Gamma \otimes_A \Gamma, \qquad X_1 \xleftarrow{\circ} X_1 \times_{X_0} X_1, \\ & E \wedge E \xrightarrow{\tau} E \wedge E, \qquad \Gamma \xrightarrow{\chi} \Gamma, \qquad X_1 \xleftarrow{(-)^{-1}} X_1. \end{split}$$

イロト イヨト イヨト イヨト

Set
$$A = E_*$$
, $\Gamma = E_*E$, $X_0 = \operatorname{Spec} A$, and $X_1 = \operatorname{Spec} \Gamma$.

Ring spectrum Hopf algebroid Groupoid scheme

$$\begin{split} & \mathbb{S} \wedge E \xrightarrow{\eta \wedge 1} E \wedge E, \qquad A \xrightarrow{\eta_L} \Gamma, \qquad X_0 \xleftarrow{\text{dom}} X_1, \\ & E \wedge \mathbb{S} \xrightarrow{1 \wedge \eta} E \wedge E, \qquad A \xrightarrow{\eta_R} \Gamma, \qquad X_0 \xleftarrow{\text{cod}} X_1, \\ & E \wedge E \xrightarrow{\mu} E, \qquad \Gamma \xrightarrow{\varepsilon} A, \qquad X_1 \xleftarrow{\text{cod}} X_0 \\ & E \wedge \mathbb{S} \wedge E \xrightarrow{1 \wedge \eta \wedge 1} E \wedge E \wedge E, \quad \Gamma \xrightarrow{\Delta} \Gamma \otimes_A \Gamma, \qquad X_1 \xleftarrow{\circ} X_1 \times_{X_0} X_1, \\ & E \wedge E \xrightarrow{\tau} E \wedge E, \qquad \Gamma \xrightarrow{\chi} \Gamma, \qquad X_1 \xleftarrow{(-)^{-1}} X_1. \end{split}$$

The Γ -coaction on E_*X makes $\mathcal{E}(X)$ into an X_1 -equivariant sheaf.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

E is complex oriented iff there's an isomorphism $E^*\mathbb{C}P^{\infty} \cong E^*\llbracket c_1 \rrbracket$. Algebraic geometry sees Spf $E^*\llbracket c_1 \rrbracket = \hat{\mathbb{A}}^1$ as a *formal affine line*.

A (1) > A (1) > A

E is complex oriented iff there's an isomorphism $E^*\mathbb{C}P^{\infty} \cong E^*\llbracket c_1 \rrbracket$. Algebraic geometry sees Spf $E^*\llbracket c_1 \rrbracket = \hat{\mathbb{A}}^1$ as a *formal affine line*.

$$\mathbb{C}\mathrm{P}^{\infty} \times \mathbb{C}\mathrm{P}^{\infty} \xrightarrow{\otimes} \mathbb{C}\mathrm{P}^{\infty}$$
$$E^{*}\mathbb{C}\mathrm{P}^{\infty} \otimes_{E_{*}} E^{*}\mathbb{C}\mathrm{P}^{\infty} \leftarrow E^{*}\mathbb{C}\mathrm{P}^{\infty}$$
$$G_{E} \times G_{E} \to G_{E}.$$

This is called a formal Lie group. To see why, Taylor expand a Lie group's multiplication at the origin.

- There is a moduli of formal Lie groups: \mathcal{M}_{fg} .
- Write \mathcal{M}_E for the groupoid scheme (X_0, X_1) from earlier. When E is complex oriented, there is a map $\mathcal{M}_E \to \mathcal{M}_{fg}$.
- Important theorem: $\mathcal{M}_{\textit{MU}} \rightarrow \mathcal{M}_{fg}$ is an isomorphism.

・ロト ・日本 ・モート ・モート

- There is a moduli of formal Lie groups: \mathcal{M}_{fg} .
- Write \mathcal{M}_E for the groupoid scheme (X_0, X_1) from earlier. When E is complex oriented, there is a map $\mathcal{M}_E \to \mathcal{M}_{fg}$.
- Important theorem: $\mathcal{M}_{\textit{MU}} \rightarrow \mathcal{M}_{fg}$ is an isomorphism.
- Summary: We have a functor $\mathcal{MU}(-)$ from **Spectra** to quasicoherent sheaves on the moduli of formal groups.

How can we use $\mathcal{M}_{\mathbf{fg}}$ to learn about spectra?

・ロト ・日本 ・モート ・モート

Adams spectral sequence

- "A_∞-space" from last time generalizes to "A_∞ ring spectrum". HF₂ and MU are examples of A_∞ ring spectra.
- A space Y gives cosimplicial spectra X_* and M_* with

$$X_n = \overbrace{E \land \cdots \land E}^{n+1 \text{ copies}}, \qquad M_n = X_n \land Y.$$

Adams spectral sequence

- "A_∞-space" from last time generalizes to "A_∞ ring spectrum". HF₂ and MU are examples of A_∞ ring spectra.
- A space Y gives cosimplicial spectra X_* and M_* with

$$X_n = \overbrace{E \land \cdots \land E}^{n+1 \text{ copies}}, \qquad M_n = X_n \land Y.$$

• Applying π_* to the skeletal filtration gives the *E*-Adams spectral sequence

$$H^*(\mathcal{M}_E; \mathcal{E}(Y)) \cong \operatorname{Ext}_{\Gamma\operatorname{-comods}}^{*,*}(A, E_*Y) \Rightarrow \pi_*Y_E^{\wedge}.$$

- 4 同 6 4 日 6 4 日 6

Adams spectral sequence

- "A_∞-space" from last time generalizes to "A_∞ ring spectrum". HF₂ and MU are examples of A_∞ ring spectra.
- A space Y gives cosimplicial spectra X_* and M_* with

$$X_n = \overbrace{E \land \cdots \land E}^{n+1 \text{ copies}}, \qquad M_n = X_n \land Y.$$

• Applying π_* to the skeletal filtration gives the *E*-Adams spectral sequence

$$H^*(\mathcal{M}_E; \mathcal{E}(Y)) \cong \operatorname{Ext}_{\Gamma\operatorname{-comods}}^{*,*}(A, E_*Y) \Rightarrow \pi_*Y_E^{\wedge}.$$

• There is an equivalence $\mathbb{S}_{MU}^{\wedge} \simeq \mathbb{S}$, so the *MU*-ASS has signature $H^*\mathcal{M}_{\mathbf{fg}} \Rightarrow \pi_*\mathbb{S}$.

・ロト ・日本 ・モート ・モート

The $H\mathbb{F}_2$ -Adams E_2 -term

<ロ> (四) (四) (三) (三) (三) (三)

The MU-Adams E_2 term localized at 2

・ロト ・回ト ・ヨト ・ヨト

Part 2: The geometry of Spec FiniteSpectra

・ロン ・四と ・ヨン ・ヨン

Working up to weak equivalence

- The *MU*-Adams spectral sequence transforms statements about *H*^{*}*M*_{fg} into statements about π_{*}S.
- The cohomology $H^*\mathcal{M}_{\mathbf{fg}}$ is only sensitive to the homotopy type of the groupoids $(X_0, X_1)(R)$, not on the sets $X_0(R)$ and $X_1(R)$ themselves.
- We can improve our computation by finding a smaller A and Γ with the same homotopy type of (X₀, X₁).
- From here on, fix a prime p and work p-locally.

- 4 回 2 - 4 回 2 - 4 回 2

- Useful in classical group theory: the p-torsion G[p].
- Useful in formal group theory: the *p*-series and *p*-torsion

$$[p]_G(x) = \overbrace{x + G}^{p \text{ times}}, \quad G[p] = \operatorname{Spf} R[[c_1]] / \langle [p]_G(c_1) \rangle.$$

イロト イヨト イヨト イヨト

- Useful in classical group theory: the p-torsion G[p].
- Useful in formal group theory: the *p*-series and *p*-torsion

$$[p]_G(x) = \overbrace{x+_G \cdots +_G x}^{p \text{ times}}, \quad G[p] = \operatorname{Spf} R[[c_1]]/\langle [p]_G(c_1) \rangle.$$

 $\bullet\,$ Over a field, we can find a coordinate γ for which

$$[p]_{\gamma \cdot G}(c_1) = px +_G \sum_{q=1}^{\infty} {}_G v_q x^{p^q}$$

for some coefficients v_q . This coordinate is *p*-typical.

p-typicality

This buys us a lot.

・ロン ・回 と ・ ヨン ・ ヨン

This buys us a lot.

• Every *p*-typical curve arises as the *p*-series of some formal group. So, $A = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$ gives a smaller presentation of \mathcal{M}_{fg} .

- 4 回 2 - 4 □ 2 - 4 □

This buys us a lot.

- Every *p*-typical curve arises as the *p*-series of some formal group. So, A = Z_(p)[v₁, v₂, ...] gives a smaller presentation of M_{fg}.
- The index of the first nonzero v_q is the *height* of G, an isomorphism invariant encoding the size of G[p]. There is a closed substack $\mathcal{M}_{\mathbf{fg}}^{\geq q} = V(p, v_1, \dots, v_{q-1})$ of $\mathcal{M}_{\mathbf{fg}}$.

- - 4 回 ト - 4 回 ト

This buys us a lot.

- Every *p*-typical curve arises as the *p*-series of some formal group. So, A = Z_(p)[v₁, v₂, ...] gives a smaller presentation of M_{fg}.
- The index of the first nonzero v_q is the *height* of G, an isomorphism invariant encoding the size of G[p]. There is a closed substack $\mathcal{M}_{\mathbf{fg}}^{\geq q} = V(p, v_1, \dots, v_{q-1})$ of $\mathcal{M}_{\mathbf{fg}}$.
- This list is complete: M_{fg} has a unique closed substack of codimension q for each q, each contained in the next.

イロン イヨン イヨン イヨン

This buys us a lot.

- Every *p*-typical curve arises as the *p*-series of some formal group. So, A = Z_(p)[v₁, v₂, ...] gives a smaller presentation of M_{fg}.
- The index of the first nonzero v_q is the *height* of G, an isomorphism invariant encoding the size of G[p]. There is a closed substack $\mathcal{M}_{\mathbf{fg}}^{\geq q} = V(p, v_1, \dots, v_{q-1})$ of $\mathcal{M}_{\mathbf{fg}}$.
- This list is complete: *M*_{fg} has a unique closed substack of codimension *q* for each *q*, each contained in the next.
- In the homework reading, you'll use this filtration to organize the computation of $H^*\mathcal{M}_{fg}$.

・ロト ・回ト ・ヨト ・ヨト

Hammer (LEFT): If Spec $R_* \to \mathcal{M}_{\mathbf{fg}}$ is flat, then the pullback $MU_*(X) \otimes_{MU_*} R_*$ defines a homology theory.

イロン イヨン イヨン イヨン

Hammer (LEFT): If Spec $R_* \to \mathcal{M}_{\mathbf{fg}}$ is flat, then the pullback $MU_*(X) \otimes_{MU_*} R_*$ defines a homology theory.

Nails:

• Brown-Peterson theory: The smaller presentation (A, Γ) yields a homology theory *BP*.

- 4 同 6 4 日 6 4 日 6

Hammer (LEFT): If Spec $R_* \to \mathcal{M}_{\mathbf{fg}}$ is flat, then the pullback $MU_*(X) \otimes_{MU_*} R_*$ defines a homology theory.

Nails:

- Brown-Peterson theory: The smaller presentation (A, Γ) yields a homology theory BP.
- Johnson-Wilson theory: $v_{q-1}^{-1}BP_*/\langle v_q, v_{q+1}, \ldots \rangle$ determines an open substack $\mathcal{M}_{\mathbf{fg}}^{\leq q}$ complementary to $\mathcal{M}_{\mathbf{fg}}^{\geq q}$. This gives a homology theory E(q-1).

イロト イヨト イヨト イヨト

Hammer (LEFT): If Spec $R_* \to \mathcal{M}_{\mathbf{fg}}$ is flat, then the pullback $MU_*(X) \otimes_{MU_*} R_*$ defines a homology theory.

Nails:

- Brown-Peterson theory: The smaller presentation (A, Γ) yields a homology theory BP.
- Johnson-Wilson theory: $v_{q-1}^{-1}BP_*/\langle v_q, v_{q+1}, \ldots \rangle$ determines an open substack $\mathcal{M}_{\mathbf{fg}}^{\leq q}$ complementary to $\mathcal{M}_{\mathbf{fg}}^{\geq q}$. This gives a homology theory E(q-1).
- Coning off each v_i for i < q in E(q) yields the qth Morava K-theory K(q), realizing the relative open M^{=q}_{fg}. Its ground ring is K(q)_{*} = F_p[v[±]_q].

<ロ> <同> <同> < 回> < 回> < 三> < 三> 三 三

Spectral realizations and the Steenrod algebra

- $H\mathbb{F}_2$ is complex oriented with formal group law $x +_{G_{H\mathbb{F}_2}} y = x + y$ over \mathbb{F}_2 .
- So, think of Spec(HF₂)_{*}HF₂ as "automorphisms of G_{HF₂}," which are power series ξ(t) with ξ(s + t) = ξ(s) + ξ(t).

・ 同 ト ・ ヨ ト ・ ヨ ト

Spectral realizations and the Steenrod algebra

- $H\mathbb{F}_2$ is complex oriented with formal group law $x +_{G_{H\mathbb{F}_2}} y = x + y$ over \mathbb{F}_2 .
- So, think of Spec(HF₂)_{*}HF₂ as "automorphisms of G_{HF₂}," which are power series ξ(t) with ξ(s + t) = ξ(s) + ξ(t).
- These must be of the form $\xi(s) = \sum_{n=0}^{\infty} \xi_n s^{2^n}$

- 4 周 ト - 4 日 ト - 4 日 ト

Spectral realizations and the Steenrod algebra

- $H\mathbb{F}_2$ is complex oriented with formal group law $x +_{G_{H\mathbb{F}_2}} y = x + y$ over \mathbb{F}_2 .
- So, think of Spec(HF₂)_{*}HF₂ as "automorphisms of G_{HF₂}," which are power series ξ(t) with ξ(s + t) = ξ(s) + ξ(t).
- These must be of the form $\xi(s) = \sum_{n=0}^{\infty} \xi_n s^{2^n}$, which compose like

$$\begin{split} \xi(\zeta(s)) &= \sum_{i=0}^{\infty} \xi_i \left(\sum_{j=0}^{\infty} \zeta_j s^{2^j} \right)^{2^i} = \sum_{i=0}^{\infty} \xi_i \sum_{j=0}^{\infty} \zeta_j^{2^i} s^{2^{i+j}} \\ &= \sum_{n=0}^{\infty} \left(\sum_{i=0}^n \xi_i \zeta_{n-i}^{2^i} \right) s^{2^n}. \end{split}$$

||▲ 同 ト || 三 ト || (三 ト

Let's mimic the ideals $I_q = \langle p, v_1, \dots, v_{q-1} \rangle$ of BP_* for *p*-local spectra. A full subcategory $\mathbf{C} \subseteq \mathbf{FiniteSpectra}$ is...

• ... *thick* if it's closed under weak equivalences, retracts, and cofiber sequences.

Let's mimic the ideals $I_q = \langle p, v_1, \dots, v_{q-1} \rangle$ of BP_* for *p*-local spectra. A full subcategory $\mathbf{C} \subseteq \mathbf{FiniteSpectra}$ is...

- ... *thick* if it's closed under weak equivalences, retracts, and cofiber sequences.
- ... an *ideal* if $x \wedge y$ is in **C** for each $x \in$ **FiniteSpectra** and $y \in$ **C**.

Let's mimic the ideals $I_q = \langle p, v_1, \dots, v_{q-1} \rangle$ of BP_* for *p*-local spectra. A full subcategory $\mathbf{C} \subseteq \mathbf{FiniteSpectra}$ is...

- ... *thick* if it's closed under weak equivalences, retracts, and cofiber sequences.
- ... an *ideal* if $x \wedge y$ is in **C** for each $x \in$ **FiniteSpectra** and $y \in$ **C**.
- ... a prime ideal if x ∧ y ∈ C forces at least one of x or y to lie in C.

Let's mimic the ideals $I_q = \langle p, v_1, \dots, v_{q-1} \rangle$ of BP_* for *p*-local spectra. A full subcategory $\mathbf{C} \subseteq \mathbf{FiniteSpectra}$ is...

- ... *thick* if it's closed under weak equivalences, retracts, and cofiber sequences.
- ... an *ideal* if $x \wedge y$ is in **C** for each $x \in$ **FiniteSpectra** and $y \in$ **C**.
- ... a prime ideal if x ∧ y ∈ C forces at least one of x or y to lie in C.

Define the geometric space of **FiniteSpectra** to be its collection of thick prime ideals.

イロト イヨト イヨト イヨト

Spec FiniteSpectra

 K(q)* is a "graded field." (In fact, they are a complete list of "field spectra.")

イロン イヨン イヨン イヨン

 K(q)_{*} is a "graded field." (In fact, they are a complete list of "field spectra.") Moreover, K(q)_{*}(−) is a ⊗-functor from FiniteSpectra to graded vector spaces over K(q)_{*}.

イロン イヨン イヨン イヨン

- K(q)_{*} is a "graded field." (In fact, they are a complete list of "field spectra.") Moreover, K(q)_{*}(−) is a ⊗-functor from FiniteSpectra to graded vector spaces over K(q)_{*}.
- The K(q)-acyclics give a thick prime ideal \mathbf{C}_q .

・ロン ・回 と ・ ヨ と ・ ヨ と

- K(q)_{*} is a "graded field." (In fact, they are a complete list of "field spectra.") Moreover, K(q)_{*}(−) is a ⊗-functor from FiniteSpectra to graded vector spaces over K(q)_{*}.
- The K(q)-acyclics give a thick prime ideal C_q .
- There is a proper inclusion $C_{q+1} \subsetneq C_q$ and this is all such thick prime ideals.

This lets us draw a picture...

イロト イヨト イヨト イヨト

Spec FiniteSpectra

Spec FiniteSpectra

• There are many other characterizations of C_q .

・ロト ・回ト ・ヨト ・ヨト

- There are many other characterizations of C_q .
- The most interesting one: $F \in \mathbf{C}_q$ iff there is a map $v : \Sigma^{2p^N(p^{q+1}-1)}F \to F$ satisfying

$$K(m)_*v = egin{cases} v_{q+1}^{p^N} & ext{if } m=q+1, \\ 0 & ext{otherwise.} \end{cases}$$

イロト イヨト イヨト イヨト

- There are many other characterizations of C_q .
- The most interesting one: $F \in \mathbf{C}_q$ iff there is a map $v: \Sigma^{2p^N(p^{q+1}-1)}F \to F$ satisfying

$$\mathcal{K}(m)_* v = egin{cases} v_{q+1}^{p^N} & ext{if } m=q+1, \ 0 & ext{otherwise.} \end{cases}$$

• This lifts the v_q-periodicity in $K(q)_*$ to something at the spectrum level...

イロン イヨン イヨン イヨン

Homework

The homework this week instructs you how to build the "Chromatic spectral sequence," which gives a framework for computing $H^*\mathcal{M}_{fg}$. It also highlights the highly periodic nature of the *MU*-Adams *E*₂-page, which we just brushed against on the previous slide.

http://math.berkeley.edu/~ericp/