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Stabilization

Key ingredient from last time:

EpX = Ep+1ΣX .

Freudenthal suspension theorem: for p < 2q − 1,

πpS
q = πp+1S

q+1.

These limiting groups for q � 0 appear as πp−qS. Also,
stable homotopy π∗ is a homology functor.

General goal for today: study the relation between stable
homotopy and more understandable homology theories.
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Twisted suspension

Select a spherical fibration Sn → Y → X .

Cone off each fiber to get a disk bundle Dn → Y ′ → X .

Cone off the whole space to get a cone CY .

The Thom space of Y is their gluing:

Y Y ′

CY TY .

When Y = Sn × X , TY = Sn+1X . Otherwise, TY is a
twisted suspension.
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Generalized homology

Last time, we defined generalized cohomology:

EnX = [X ,En].

Generalized homology looks different:

E−nX = π0(E ∧ Sn ∧ X ).

The operation −⊗ R is a base-change functor; think of −∧ E
similarly. E ∧ Sn ∧ X is a base change of the shift Sn ∧ X to
E -coefficients.

Y is said to be E-oriented when there is an isomorphism

E ∧ TY ' E ∧ Sn ∧ X .

E untwists Y , and this is a spectral Thom isomorphism.
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Complex bordism, MU

Sphere bundles are in ample supply: every complex vector
bundle V on a manifold admits a metric, giving a sphere
bundle SV and a disk bundle DV .

Again thinking of E like a module, E is a ring spectrum when
given a monoid structure

E ∧ E
µ−→ E , S η−→ E .

MU is defined to be the universal ring spectrum for which
every such sphere bundle is oriented. Every other ring
spectrum E which is oriented for complex vector bundles
receives a homotopy-unique ring spectrum map MU → E .1

1Note: This definition seems to have nothing to do with geometric bordism.
That connection will come much, much later.
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Homology theories are sheaf-valued

When E is a ring spectrum, E∗ is a ring and E∗X is an
E∗-module:

Sn ∧ Sm e∧x−−→ E ∧ E ∧ X
µ∧1−−→ E ∧ X .

E∗X an E∗-module ↔ E(X ) a quasicoherent sheaf on SpecE∗.

Problem: (HF2)∗ = F2 and MU∗ = Z[x1, x2, . . .]. These are
too small and too large respectively.

What other structure can we write down on homology?
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Homology theories are sheaf-valued

We used the multiplication E ∧ E
µ−→ E to produce the

E∗-action. What use is the unit S η−→ E?

We can build a map

E ∧ X
'−→ S ∧ E ∧ X

η∧1∧1−−−−→ E ∧ E ∧ X .

With some flatness, this gives

E∗X → π∗(E ∧ E ∧ X )
∼=←− E∗E ⊗E∗ E∗X .

This is some sort of coaction map.

Eric Peterson On Beyond Hatcher!
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Homology theories are sheaf-valued

Set A = E∗, Γ = E∗E , X0 = SpecA, and X1 = Spec Γ.

Ring spectrum

Hopf algebroid Groupoid scheme

S ∧ E
η∧1−−→ E ∧ E ,

A
ηL−→ Γ, X0

dom←−− X1,

E ∧ S 1∧η−−→ E ∧ E ,

A
ηR−→ Γ, X0

cod←−− X1,

E ∧ E
µ−→ E ,

Γ
ε−→ A, X1

id←− X0

E ∧ S ∧ E
1∧η∧1−−−−→ E ∧ E ∧ E ,

Γ
∆−→ Γ⊗A Γ, X1

◦←− X1 ×X0 X1,

E ∧ E
τ−→ E ∧ E ,

Γ
χ−→ Γ, X1

(−)−1

←−−−− X1.

The Γ-coaction on E∗X makes E(X ) into an X1-equivariant sheaf.
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Back to bordism

E is complex oriented iff there’s an isomorphism E ∗CP∞ ∼= E ∗Jc1K.
Algebraic geometry sees Spf E ∗Jc1K = Â1 as a formal affine line.

CP∞ × CP∞ ⊗−→ CP∞

E ∗CP∞ ⊗E∗ E
∗CP∞ ← E ∗CP∞

GE × GE → GE .

This is called a formal Lie group. To see why, Taylor expand a Lie
group’s multiplication at the origin.

Eric Peterson On Beyond Hatcher!
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Back to bordism

There is a moduli of formal Lie groups: Mfg.

Write ME for the groupoid scheme (X0,X1) from earlier.
When E is complex oriented, there is a map ME →Mfg.

Important theorem: MMU →Mfg is an isomorphism.

Summary: We have a functor MU(−) from Spectra to
quasicoherent sheaves on the moduli of formal groups.

How can we use Mfg to learn about spectra?

Eric Peterson On Beyond Hatcher!
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Adams spectral sequence

“A∞-space” from last time generalizes to “A∞ ring
spectrum”. HF2 and MU are examples of A∞ ring spectra.

A space Y gives cosimplicial spectra X∗ and M∗ with

Xn =

n + 1 copies︷ ︸︸ ︷
E ∧ · · · ∧ E , Mn = Xn ∧ Y .

Applying π∗ to the skeletal filtration gives the E -Adams
spectral sequence

H∗(ME ; E(Y )) ∼= Ext∗,∗Γ-comods(A,E∗Y )⇒ π∗Y
∧
E .

There is an equivalence S∧MU ' S, so the MU-ASS has
signature H∗Mfg ⇒ π∗S.

Eric Peterson On Beyond Hatcher!
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The HF2-Adams E2-term
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The MU-Adams E2 term localized at 2

�
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Part 2: The geometry of SpecFiniteSpectra
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Working up to weak equivalence

The MU-Adams spectral sequence transforms statements
about H∗Mfg into statements about π∗S.

The cohomology H∗Mfg is only sensitive to the homotopy
type of the groupoids (X0,X1)(R), not on the sets X0(R) and
X1(R) themselves.

We can improve our computation by finding a smaller A and Γ
with the same homotopy type of (X0,X1).

From here on, fix a prime p and work p-locally.

Eric Peterson On Beyond Hatcher!
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p-typicality

Useful in classical group theory: the p-torsion G [p].

Useful in formal group theory: the p-series and p-torsion

[p]G (x) =

p times︷ ︸︸ ︷
x +G · · ·+G x , G [p] = Spf RJc1K/〈[p]G (c1)〉.

Over a field, we can find a coordinate γ for which

[p]γ·G (c1) = px +G

∞∑
q=1

Gvqx
pq

for some coefficients vq. This coordinate is p-typical.

Eric Peterson On Beyond Hatcher!
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p-typicality

This buys us a lot.

Every p-typical curve arises as the p-series of some formal
group. So, A = Z(p)[v1, v2, . . .] gives a smaller presentation of
Mfg.

The index of the first nonzero vq is the height of G , an
isomorphism invariant encoding the size of G [p]. There is a
closed substack M≥qfg = V (p, v1, . . . , vq−1) of Mfg.

This list is complete: Mfg has a unique closed substack of
codimension q for each q, each contained in the next.

In the homework reading, you’ll use this filtration to organize
the computation of H∗Mfg.

Eric Peterson On Beyond Hatcher!
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In the homework reading, you’ll use this filtration to organize
the computation of H∗Mfg.

Eric Peterson On Beyond Hatcher!
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Spectral realizations

Hammer (LEFT): If SpecR∗ →Mfg is flat, then the pullback
MU∗(X )⊗MU∗ R∗ defines a homology theory.

Nails:

Brown-Peterson theory: The smaller presentation (A, Γ) yields
a homology theory BP.

Johnson-Wilson theory: v−1
q−1BP∗/〈vq, vq+1, . . .〉 determines

an open substack M<q
fg complementary to M≥qfg . This gives a

homology theory E (q − 1).

Coning off each vi for i < q in E (q) yields the qth Morava
K -theory K (q), realizing the relative open M=q

fg . Its ground

ring is K (q)∗ = Fp[v±q ].

Eric Peterson On Beyond Hatcher!
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Spectral realizations and the Steenrod algebra

HF2 is complex oriented with formal group law
x +GHF2

y = x + y over F2.

So, think of Spec(HF2)∗HF2 as “automorphisms of GHF2 ,”
which are power series ξ(t) with ξ(s + t) = ξ(s) + ξ(t).

These must be of the form ξ(s) =
∑∞

n=0 ξns
2n , which

compose like

ξ(ζ(s)) =
∞∑
i=0

ξi

 ∞∑
j=0

ζjs
2j

2i

=
∞∑
i=0

ξi

∞∑
j=0

ζ2i
j s2i+j

=
∞∑
n=0

(
n∑

i=0

ξiζ
2i
n−i

)
s2n .
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The spectrum of a monoidal category

Let’s mimic the ideals Iq = 〈p, v1, . . . , vq−1〉 of BP∗ for p-local
spectra. A full subcategory C ⊆ FiniteSpectra is...

... thick if it’s closed under weak equivalences, retracts, and
cofiber sequences.

... an ideal if x ∧ y is in C for each x ∈ FiniteSpectra and
y ∈ C.

... a prime ideal if x ∧ y ∈ C forces at least one of x or y to
lie in C.

Define the geometric space of FiniteSpectra to be its collection of
thick prime ideals.

Eric Peterson On Beyond Hatcher!
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SpecFiniteSpectra

K (q)∗ is a “graded field.” (In fact, they are a complete list of
“field spectra.”)

Moreover, K (q)∗(−) is a ⊗-functor from
FiniteSpectra to graded vector spaces over K (q)∗.

The K (q)-acyclics give a thick prime ideal Cq.

There is a proper inclusion Cq+1 ( Cq and this is all such
thick prime ideals.

This lets us draw a picture...

Eric Peterson On Beyond Hatcher!
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SpecFiniteSpectra

SpecFiniteSpectra

SpecZ
〈0〉

〈2〉 〈3〉 〈5〉 · · ·
C0

C(2),1 C(3),1 C(5),1

C(2),2 C(3),2 C(5),2

...
...

...

C(2),∞C(3),∞C(5),∞

· · ·

· · ·

· · ·

· · ·
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SpecFiniteSpectra

There are many other characterizations of Cq.

The most interesting one: F ∈ Cq iff there is a map

v : Σ2pN(pq+1−1)F → F satisfying

K (m)∗v =

{
vp

N

q+1 if m = q + 1,

0 otherwise.

This lifts the vq-periodicity in K (q)∗ to something at the
spectrum level...

Eric Peterson On Beyond Hatcher!
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Homework

The homework this week instructs you how to build the
“Chromatic spectral sequence,” which gives a framework for
computing H∗Mfg. It also highlights the highly periodic nature of
the MU-Adams E2-page, which we just brushed against on the
previous slide.

http://math.berkeley.edu/˜ericp/

Eric Peterson On Beyond Hatcher!
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