On Beyond Hatcher! The delooping problem

Eric Peterson

November 1, 2012

Eric Peterson On Beyond Hatcher!

Image: A math a math

-≣->

Administrivia

- Four lectures, four Thursdays in November
 - The delooping problem (+ the Steenrod algebra)
 - Spectra and formal groups (+ the chromatic SS)
 - Computations with the EHP spectral sequence $(+ \pi_* L_{K(1)}S)$
 - Hints at globalization (+ even more formal geometry)
- Homework readings
 - 1-2 pages after each lecture
 - Optional not connected to the main stream of lectures
 - Largely computational, reasonably detailed
 - Idea: even if you don't end up understanding the computation, trying to read through it and looking up relevant words (e.g., what's the *Verschiebung*?) will be useful.

• Notes available at http://math.berkeley.edu/~ericp/

 Our main goal: the homotopy groups of spheres, π_pS^q = [S^p, S^q]. These are very hard to compute. The more we can compute, the more we know about topology.

イロン イヨン イヨン イヨン

- Our main goal: the homotopy groups of spheres, $\pi_p S^q = [S^p, S^q]$. These are very hard to compute. The more we can compute, the more we know about topology.
- $\pi_0 X$ is the connected components of X.

イロン イヨン イヨン イヨン

- Our main goal: the homotopy groups of spheres, $\pi_p S^q = [S^p, S^q]$. These are very hard to compute. The more we can compute, the more we know about topology.
- $\pi_0 X$ is the connected components of X.
- Fibrations (/ fiber sequences) yield lexseqs on homotopy groups.

・ロン ・回と ・ヨン ・ヨン

- Our main goal: the homotopy groups of spheres, π_pS^q = [S^p, S^q]. These are very hard to compute. The more we can compute, the more we know about topology.
- $\pi_0 X$ is the connected components of X.
- Fibrations (/ fiber sequences) yield lexseqs on homotopy groups.
- Group quotient $\mathbb{Z} \to \mathbb{R} \to S^1$ yields $\pi_*S^1 = \{0, \mathbb{Z}, 0, 0, ...\}$, since \mathbb{R} is contractible and \mathbb{Z} is a discrete space.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Part 1: Spectral sequences

◆□ > ◆□ > ◆臣 > ◆臣 >

Eilenberg-Steenrod axioms

The other tool available to use is "homology." What's homology?

イロト イヨト イヨト イヨト

Eilenberg-Steenrod axioms

The other tool available to use is "homology." What's homology? It's a functor H_* : **Spaces** \rightarrow **GradedGroups** satisfying...

- *H*_{*} is homotopy invariant.
- H_*S^0 is known, often abbreviated to H_* .

•
$$H_* \bigvee_{\alpha} X_{\alpha} \cong \bigoplus_{\alpha} H_* X_{\alpha}.$$

• *H*_{*} is "locally determined".

A (1) > A (2) > A

Locality

The locality axiom asserts that a cofiber sequence $A \to X \to X/A$ yields a lexseq

$$\cdots \rightarrow H_{n+1}X/A \rightarrow H_nA \rightarrow H_nX \rightarrow H_nX/A \rightarrow H_{n-1}A \rightarrow \cdots$$

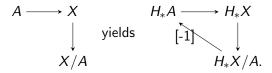
・ロト ・回ト ・ヨト ・ヨト

Locality

The locality axiom asserts that a cofiber sequence $A \rightarrow X \rightarrow X/A$ yields a lexseq

$$\cdots \rightarrow H_{n+1}X/A \rightarrow H_nA \rightarrow H_nX \rightarrow H_nX/A \rightarrow H_{n-1}A \rightarrow \cdots$$

This can be written compactly like so:



・ロン ・回 と ・ ヨン ・ ヨン

Filtration spectral sequence

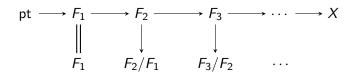
Most of the time, spaces are decomposed into many pieces, not just two. Consider the following filtration of X...

$$\mathsf{pt} \longrightarrow F_1 \longrightarrow F_2 \longrightarrow F_3 \longrightarrow \cdots \longrightarrow X$$

A (1) > A (1) > A

Filtration spectral sequence

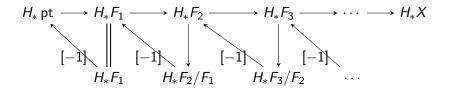
... extend each inclusion to a cofiber sequence ...



◆□> ◆□> ◆目> ◆目> ◆目> 目 のへの

Filtration spectral sequence

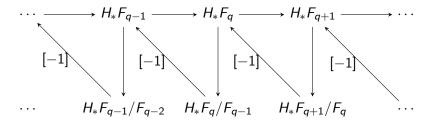
... and apply the homology functor H_* .



イロン イ部ン イヨン イヨン 三日

Filtration spectral sequence

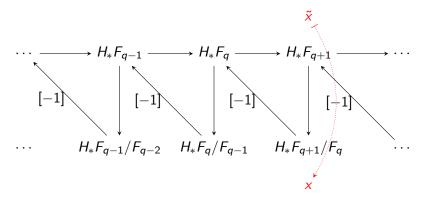
Our goal now is to recover H_*X from H_*F_q/F_{q-1} .



▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Filtration spectral sequence

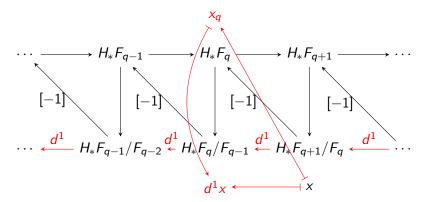
Our goal now is to recover H_*X from H_*F_q/F_{q-1} .



個 と く ヨ と く ヨ と

Filtration spectral sequence

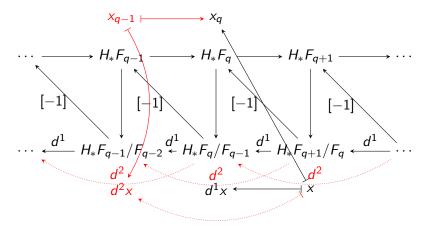
Our goal now is to recover H_*X from H_*F_q/F_{q-1} .



< 🗇 > < 🖻 >

Filtration spectral sequence

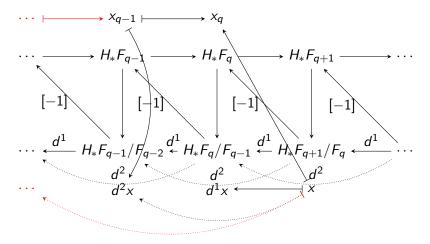
Our goal now is to recover H_*X from H_*F_q/F_{q-1} .



◆ □ ▶ ◆ 三

Filtration spectral sequence

Our goal now is to recover H_*X from H_*F_q/F_{q-1} .



<- ↓ ↓ < ≥ >

Filtration spectral sequence

• This process defines groups $E_{p,q}^r$ and differentials $d^r: E_{p,q}^r \to E_{p-1,q-r}^r$. The cohomology of the *r*th page yields the (r+1)st, and the first page is

$$E_{p,q}^1 = H_p F_q / F_{q-1}.$$

- A class x ∈ H_{*}X always lifts to some class x_q in H_{*}F_q for q ≫ 0. The smallest such q is the only time x_q images to a nonzero element in the bottom row of the diagram. This smallest q gives a filtration on H_{*}X.
- With some assumptions, the groups $E_{p,*}^{\infty}$ are isomorphic to the associated graded of this filtration on H_pX . "The spectral sequence compares the homology groups of the associated graded to an associated graded of the homology groups."

イロン イヨン イヨン イヨン

Atiyah-Hirzebruch spectral sequence

Example: put a cell structure on a connected space X and take $F_q = X^{(q)}$ the q-skeleton.

Atiyah-Hirzebruch spectral sequence

Example: put a cell structure on a connected space X and take $F_q = X^{(q)}$ the q-skeleton.

Atiyah-Hirzebruch spectral sequence

Example: put a cell structure on a connected space X and take $F_q = X^{(q)}$ the q-skeleton.

Apply E_* . The d^1 -differential detects the attaching degree, so

$$E_{p,q}^2 = H_q^{\operatorname{cell}}(X; E_p) \Rightarrow E_p X.$$

Atiyah-Hirzebruch spectral sequence

Example: put a cell structure on a connected space X and take $F_q = X^{(q)}$ the q-skeleton.

Apply E_* . The d^1 -differential detects the attaching degree, so

$$E_{p,q}^2 = H_q^{\operatorname{cell}}(X; E_p) \Rightarrow E_p X.$$

Basic exercise: Compute $H_*(\mathbb{RP}^n;\mathbb{Z})$ and $H_*(\mathbb{RP}^n;\mathbb{F}_2)$ this way.

Part 2: Spectra, operads, and delooping

・ロン ・四と ・ヨン ・ヨン

• Recall that the functor $H^n(-; G)$ is representable:

$$H^n(X; G) = [X, K(G, n)].$$

• Brown representability says this is not an accident: for any cohomology theory E^* there are homotopy types \underline{E}_* with

$$E^n X = [X, \underline{E}_n].$$

• Recall that the functor $H^n(-; G)$ is representable:

$$H^n(X; G) = [X, K(G, n)].$$

• Brown representability says this is not an accident: for any cohomology theory E^* there are homotopy types \underline{E}_* with

$$E^n X = [X, \underline{E}_n].$$

• A good thing to do with a functor¹ is to try to turn it into an equivalence: how do we need to restrict / augment the target to make this happen?

Question: What structure do these spaces \underline{E}_* have?

• The Eilenberg-Steenrod axioms yield a natural isomorphism $E^n X = E^{n+1} \Sigma X$.

イロン 不同と 不同と 不同と

• The Eilenberg-Steenrod axioms yield a natural isomorphism $E^n X = E^{n+1} \Sigma X$.

$$[X,\underline{E}_n]=E^nX$$

イロン 不同と 不同と 不同と

• The Eilenberg-Steenrod axioms yield a natural isomorphism $E^n X = E^{n+1} \Sigma X$.

$$[X,\underline{E}_n] = E^n X = E^{n+1} \Sigma X$$

イロン 不同と 不同と 不同と

Spectra

Question: What structure do these spaces \underline{E}_* have?

• The Eilenberg-Steenrod axioms yield a natural isomorphism $E^n X = E^{n+1} \Sigma X$.

$$[X, \underline{E}_n] = E^n X = E^{n+1} \Sigma X = [\Sigma X, \underline{E}_{n+1}]$$

イロン 不同と 不同と 不同と

Spectra

Question: What structure do these spaces \underline{E}_* have?

• The Eilenberg-Steenrod axioms yield a natural isomorphism $E^n X = E^{n+1} \Sigma X$.

$$[X, \underline{E}_n] = E^n X = E^{n+1} \Sigma X = [\Sigma X, \underline{E}_{n+1}] = [X, \Omega \underline{E}_{n+1}].$$

イロン 不同と 不同と 不同と

Spectra

Question: What structure do these spaces \underline{E}_* have?

• The Eilenberg-Steenrod axioms yield a natural isomorphism $E^n X = E^{n+1} \Sigma X$.

$$[X, \underline{\underline{E}}_n] = E^n X = E^{n+1} \Sigma X = [\Sigma X, \underline{\underline{E}}_{n+1}] = [X, \Omega \underline{\underline{E}}_{n+1}].$$

• The Yoneda lemma says there are weak equivalences

$$\underline{E}_n \xrightarrow{\simeq} \Omega \underline{E}_{n+1}.$$

• The Eilenberg-Steenrod axioms yield a natural isomorphism $E^n X = E^{n+1} \Sigma X$.

$$[X, \underline{\underline{E}}_n] = E^n X = E^{n+1} \Sigma X = [\Sigma X, \underline{\underline{E}}_{n+1}] = [X, \Omega \underline{\underline{E}}_{n+1}].$$

• The Yoneda lemma says there are weak equivalences

$$\underline{E}_n \xrightarrow{\simeq} \Omega \underline{E}_{n+1}.$$

• This is a complete characterization: every sequence of spaces \underline{E}_n with connecting maps $\underline{E}_n \xrightarrow{\simeq} \Omega \underline{E}_{n+1}$ yields a spectrum E.

The ∞ -category of **Spectra**

• **Spaces** is more than just a category: you can suspend spaces, take the homotopy category, build the smash product, and so on.

< A > < 3

The ∞ -category of **Spectra**

- **Spaces** is more than just a category: you can suspend spaces, take the homotopy category, build the smash product, and so on.
- We've built **Spectra** in terms of spaces, and so it would be nice to be able to perform these operations on spectra too.

- **Spaces** is more than just a category: you can suspend spaces, take the homotopy category, build the smash product, and so on.
- We've built **Spectra** in terms of spaces, and so it would be nice to be able to perform these operations on spectra too.
- Theorem: You can! "**Spectra** is a stable ∞-category with a symmetric monoidal product ∧ and adjoint functors

 Σ^{∞} : Spaces \leftrightarrows Spectra : Ω^{∞} ."

▲ □ ▶ ▲ □ ▶ ▲

- **Spaces** is more than just a category: you can suspend spaces, take the homotopy category, build the smash product, and so on.
- We've built **Spectra** in terms of spaces, and so it would be nice to be able to perform these operations on spectra too.
- Theorem: You can! "**Spectra** is a stable ∞-category with a symmetric monoidal product ∧ and adjoint functors

 Σ^{∞} : Spaces \leftrightarrows Spectra : Ω^{∞} ."

• Big idea: Work with spectra rather than cohomology theories, and study spectra using techniques from algebraic topology.

- 4 同 6 4 日 6 4 日 6

- "Stability" means $\Sigma: \textbf{Spectra} \rightarrow \textbf{Spectra}$ is an equivalence.
- It is given by the shift operator: $\underline{\Sigma}\underline{E}_n = \underline{E}_{n+1}$. To get the inverse, $\underline{\Sigma}^{-1}\underline{E}_n = \underline{\Omega}\underline{E}_n = \Omega\underline{E}_n$.

イロト イヨト イヨト イヨト

- "Stability" means $\Sigma: \textbf{Spectra} \rightarrow \textbf{Spectra}$ is an equivalence.
- It is given by the shift operator: $\underline{\Sigma E}_n = \underline{E}_{n+1}$. To get the inverse, $\underline{\Sigma^{-1}E}_n = \underline{\Omega E}_n = \Omega \underline{E}_n$.
- In particular, this yields "negative-dimensional spheres":

$$\mathbb{S}^{-n} = \Sigma^{-n} \mathbb{S}^0.$$

The homotopy groups $\pi_* E$ of a spectrum are \mathbb{Z} -indexed.

イロト イヨト イヨト イヨト

- The space BU × Z classifies stable vector bundles. The functor it represents is called K(−).
- For a cofiber sequence $A \to X \to X/A$, the sequence $K(A) \leftarrow K(X) \leftarrow K(X/A)$ is exact in the middle.

イロン イヨン イヨン イヨン

æ

- The space BU × Z classifies stable vector bundles. The functor it represents is called K(−).
- For a cofiber sequence $A \to X \to X/A$, the sequence $K(A) \leftarrow K(X) \leftarrow K(X/A)$ is exact in the middle.
- Question: Can K(-) be extended to a cohomology theory with K(-) = K⁰(-)?

- The space BU × Z classifies stable vector bundles. The functor it represents is called K(−).
- For a cofiber sequence $A \to X \to X/A$, the sequence $K(A) \leftarrow K(X) \leftarrow K(X/A)$ is exact in the middle.
- Question: Can K(-) be extended to a cohomology theory with K(-) = K⁰(-)?
- $K^{-n}X$ is easy to define:

$$K^{-n}X = K^0\Sigma^nX = K(\Sigma^nX).$$

So, $\underline{K}_{-n} = \Omega^n (BU \times \mathbb{Z}).$

- The space BU × Z classifies stable vector bundles. The functor it represents is called K(−).
- For a cofiber sequence $A \to X \to X/A$, the sequence $K(A) \leftarrow K(X) \leftarrow K(X/A)$ is exact in the middle.
- Question: Can K(-) be extended to a cohomology theory with K(-) = K⁰(-)?
- $K^{-n}X$ is easy to define:

$$K^{-n}X = K^0\Sigma^nX = K(\Sigma^nX).$$

So, $\underline{K}_{-n} = \Omega^n (BU \times \mathbb{Z}).$

• Refined question: What about K^n ? Can we find spaces \underline{K}_n with $\Omega^n \underline{K}_n = BU \times \mathbb{Z}$? What conditions does $BU \times \mathbb{Z} = \underline{K}_0$ need to satisfy?

・ 回 と ・ ヨ と ・ ヨ と

• We know is that \underline{E}_0 is a loopspace: $\underline{E}_0 = \Omega \underline{E}_1$. Loopspaces come with a "multiplication" which is not associative or unital, but becomes so after relaxing to the homotopy category.

- We know is that \underline{E}_0 is a loopspace: $\underline{E}_0 = \Omega \underline{E}_1$. Loopspaces come with a "multiplication" which is not associative or unital, but becomes so after relaxing to the homotopy category.
- Pick disjoint subintervals $\{[a_i, b_i] \subseteq [0, 1]\}_{i=1}^n$ and loops $\{\gamma_i \in \Omega X\}_{i=1}^n$. Then there is a product

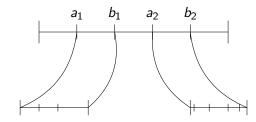
$$\Gamma(t) = \begin{cases} \gamma_1\left(\frac{t-a_1}{b_1-a_1}\right), & t \in [a_1, b_1], \\ \vdots & \vdots \\ \gamma_n\left(\frac{t-a_n}{b_n-a_n}\right), & t \in [a_n, b_n], \\ * & \text{otherwise.} \end{cases}$$

- We know is that \underline{E}_0 is a loopspace: $\underline{E}_0 = \Omega \underline{E}_1$. Loopspaces come with a "multiplication" which is not associative or unital, but becomes so after relaxing to the homotopy category.
- Pick disjoint subintervals $\{[a_i, b_i] \subseteq [0, 1]\}_{i=1}^n$ and loops $\{\gamma_i \in \Omega X\}_{i=1}^n$. Then there is a product

$$\Gamma(t) = \begin{cases} \gamma_1\left(\frac{t-a_1}{b_1-a_1}\right), & t \in [a_1, b_1], \\ \vdots & \vdots \\ \gamma_n\left(\frac{t-a_n}{b_n-a_n}\right), & t \in [a_n, b_n], \\ * & \text{otherwise.} \end{cases}$$

• This is a family of products $(\Omega X)^{\times n} \times A_n \to \Omega X$.

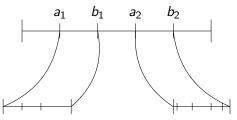
• Subintervals can be nested:



This gives maps $(A_{n_1} \times \cdots \times A_{n_r}) \times A_r \to A_{n_+}$.

- 4 回 2 - 4 □ 2 - 4 □

• Subintervals can be nested:

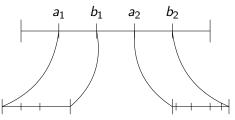


This gives maps $(A_{n_1} \times \cdots \times A_{n_r}) \times A_r \to A_{n_+}$.

• Spaces together with compatible maps like these are called an *operad*. This one is called the A_{∞} operad.

< 🗇 > < 🖃 >

• Subintervals can be nested:



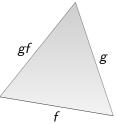
This gives maps $(A_{n_1} \times \cdots \times A_{n_r}) \times A_r \to A_{n_+}$.

- Spaces together with compatible maps like these are called an *operad*. This one is called the A_{∞} operad.
- Spaces like ΩX with multiplications parameterized by an operad are called *algebras* over that operad. ΩX is "an A_{∞} -algebra in spaces" or "an A_{∞} -space."

Delooping A_{∞} -spaces

Back to our example HG with $\underline{HG}_0 = G$ and $\underline{HG}_1 = BG$. Hatcher's model for BG is a simplicial complex with ...

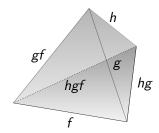
- ... one 0-simplex.
- ... a 1-simplex for each $g \in G$.
- ... a 2-simplex for each pair (f, g) ∈ G², with edges labeled by f, g, and gf.



/⊒ ▶ < ≣ ▶

Delooping A_{∞} -spaces

... a 3-simplex for each triple (f, g, h) ∈ G³ with edges labeled to encode the triple project f ⋅ g ⋅ h.



• ... and so on.

<- ↓ ↓ < ≥ >

< ≣ >

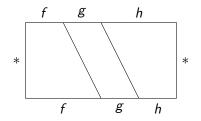
Delooping A_{∞} -spaces

We can mimic this construction for an A_{∞} -space X; for example, we'll show how to produce the 3-simplices in BX.

イロト イヨト イヨト イヨト

Delooping A_{∞} -spaces

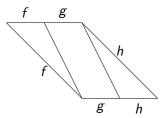
We can mimic this construction for an A_{∞} -space X; for example, we'll show how to produce the 3-simplices in BX. Start with a path in A_3 showing homotopy-associativity of $f \cdot (g \cdot h) \sim (f \cdot g) \cdot h$:



・日本 ・日本 ・日本

Delooping $\overline{A_{\infty}}$ -spaces

Now, contract the constant edges labeled * to get

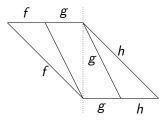


イロト イヨト イヨト イヨト

æ

Delooping A_{∞} -spaces

Now, contract the constant edges labeled * to get

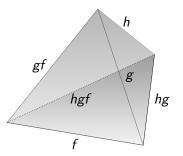


Then, if you fold along g and distend, you'll get...

<- ↓ ↓ < ≥ >

Delooping A_{∞} -spaces

(Fold along g and distend to get...)



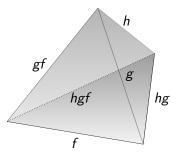
The other simplices work similarly.

<- ↓ ↓ < ≥ >

-≣->

Delooping A_{∞} -spaces

(Fold along g and distend to get...)



The other simplices work similarly. Then, there is a theorem that states if $\pi_0 \underline{E}_1 = 0$, then $B\underline{E}_0 \simeq \underline{E}_1$

<- ↓ ↓ < ≥ >

Delooping A_{∞} -spaces

(Fold along g and distend to get...)



The other simplices work similarly. Then, there is a theorem that states if $\pi_0 \underline{E}_1 = 0$, then $B\underline{E}_0 \simeq \underline{E}_1$ — so the loopspace product is enough to deloop \underline{E}_0 !

▲ 御 ▶ → ミ ▶

• We can iterate this story: because $\underline{E}_0 = \Omega^2 \underline{E}_2$, it is also an algebra for the operad of sub-squares in $[0, 1] \times [0, 1]$. This is called the E_2 -operad.

イロト イヨト イヨト イヨト

- We can iterate this story: because $\underline{E}_0 = \Omega^2 \underline{E}_2$, it is also an algebra for the operad of sub-squares in $[0, 1] \times [0, 1]$. This is called the E_2 -operad.
- More generally, $\underline{E}_0 = \Omega^n \underline{E}_n$, so it is an algebra for the operad of sub-*n*-cubes in $[0, 1]^{\times n}$, called the E_n -operad.

イロト イヨト イヨト イヨト

- We can iterate this story: because $\underline{E}_0 = \Omega^2 \underline{E}_2$, it is also an algebra for the operad of sub-squares in $[0, 1] \times [0, 1]$. This is called the E_2 -operad.
- More generally, <u>E₀</u> = Ωⁿ<u>E_n</u>, so it is an algebra for the operad of sub-*n*-cubes in [0, 1]^{×n}, called the E_n-operad.
- Because it's an algebra for the E_n -operad for each n, it's called an E_∞ -space.

- You've seen sub-squares before in the proof that $\pi_2 X$ is abelian.
- This means that a nonabelian G cannot be an E_2 -space, since $\pi_2 B^2 G = \pi_0 \Omega^2 B^2 G = \pi_0 G = G$ must be abelian.

- You've seen sub-squares before in the proof that $\pi_2 X$ is abelian.
- This means that a nonabelian G cannot be an E_2 -space, since $\pi_2 B^2 G = \pi_0 \Omega^2 B^2 G = \pi_0 G = G$ must be abelian.
- An *E*₁-space is homotopy-associative, an *E*₂-space is homotopy-commutative, and *E*_n-spaces generalize this in the following sense:

Applying B to an E_n -space results in an E_{n-1} -space.

- You've seen sub-squares before in the proof that $\pi_2 X$ is abelian.
- This means that a nonabelian G cannot be an E_2 -space, since $\pi_2 B^2 G = \pi_0 \Omega^2 B^2 G = \pi_0 G = G$ must be abelian.
- An *E*₁-space is homotopy-associative, an *E*₂-space is homotopy-commutative, and *E*_n-spaces generalize this in the following sense:

Applying *B* to an E_n -space results in an E_{n-1} -space. An E_{∞} -space has an infinite sequence of deloopings.

In fact, the assignment $E \mapsto \underline{E}_0$ is an equivalence between connective spectra ($\pi_{*<0}E = 0$) and E_{∞} -spaces.

・ロト ・回ト ・ヨト ・ヨト

• The functor $\Omega^{\infty}\Sigma^{\infty}X = \operatorname{colim}_{n}\Omega^{n}\Sigma^{n}X$ can be thought of as replacing X with various E_{n} -space approximations as n grows, yielding in the limit an E_{∞} -space / connective spectrum.

- The functor $\Omega^{\infty}\Sigma^{\infty}X = \operatorname{colim}_{n}\Omega^{n}\Sigma^{n}X$ can be thought of as replacing X with various E_{n} -space approximations as n grows, yielding in the limit an E_{∞} -space / connective spectrum.
- An A_∞-space is exactly the structure that arises when you replace a topological group G with a homotopy equivalent space X and try to transport the product structure to X.

- The functor $\Omega^{\infty}\Sigma^{\infty}X = \operatorname{colim}_{n}\Omega^{n}\Sigma^{n}X$ can be thought of as replacing X with various E_{n} -space approximations as n grows, yielding in the limit an E_{∞} -space / connective spectrum.
- An A_∞-space is exactly the structure that arises when you replace a topological group G with a homotopy equivalent space X and try to transport the product structure to X. In fact, every A_∞-space has a strictly associative model.

イロト イポト イヨト イヨト

- The functor $\Omega^{\infty}\Sigma^{\infty}X = \operatorname{colim}_{n}\Omega^{n}\Sigma^{n}X$ can be thought of as replacing X with various E_{n} -space approximations as n grows, yielding in the limit an E_{∞} -space / connective spectrum.
- An A_∞-space is exactly the structure that arises when you replace a topological group G with a homotopy equivalent space X and try to transport the product structure to X. In fact, every A_∞-space has a strictly associative model.
- Curiously, this is **not** true for E_∞-spaces: there are E_∞-spaces with no strictly commutative model. This is part of what makes spectra interesting.

イロト イヨト イヨト イヨト

Homework

Do the homework reading! You'll learn to compute $H_*(\mathcal{K}(\mathbb{F}_2,*);\mathbb{F}_2)$, called the (dual, unstable) Steenrod algebra. With spectral sequences and deloopings, you have all the tools you'll need.

http://math.berkeley.edu/~ericp/

・ 同 ト ・ ヨ ト ・ ヨ ト