
Introduction
Spectral sequences

Spectra, operads, and delooping

On Beyond Hatcher!
The delooping problem

Eric Peterson

November 1, 2012

Eric Peterson On Beyond Hatcher!



Introduction
Spectral sequences

Spectra, operads, and delooping

Administrivia

Four lectures, four Thursdays in November

The delooping problem (+ the Steenrod algebra)
Spectra and formal groups (+ the chromatic SS)
Computations with the EHP spectral sequence (+ π∗LK(1)S)
Hints at globalization (+ even more formal geometry)

Homework readings

1-2 pages after each lecture
Optional — not connected to the main stream of lectures
Largely computational, reasonably detailed
Idea: even if you don’t end up understanding the computation,
trying to read through it and looking up relevant words (e.g.,
what’s the Verschiebung?) will be useful.

Notes available at http://math.berkeley.edu/˜ericp/

Eric Peterson On Beyond Hatcher!



Introduction
Spectral sequences

Spectra, operads, and delooping

π∗S
1

Our main goal: the homotopy groups of spheres,
πpS

q = [Sp,Sq]. These are very hard to compute. The more
we can compute, the more we know about topology.

π0X is the connected components of X .

Fibrations (/ fiber sequences) yield lexseqs on homotopy
groups.

Group quotient Z→ R→ S1 yields π∗S
1 = {0,Z, 0, 0, . . .},

since R is contractible and Z is a discrete space.
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Part 1: Spectral sequences
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Eilenberg-Steenrod axioms

The other tool available to use is “homology.” What’s homology?

It’s a functor H∗ : Spaces→ GradedGroups satisfying...

H∗ is homotopy invariant.

H∗S
0 is known, often abbreviated to H∗.

H∗
∨
α Xα

∼=
⊕

αH∗Xα.

H∗ is “locally determined”.
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Locality

The locality axiom asserts that a cofiber sequence A→ X → X/A
yields a lexseq

· · · → Hn+1X/A→ HnA→ HnX → HnX/A→ Hn−1A→ · · · .

This can be written compactly like so:

A X

X/A

yields

H∗A H∗X

H∗X/A.

[-1]
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Filtration spectral sequence

Most of the time, spaces are decomposed into many pieces, not
just two. Consider the following filtration of X ...

pt F1 F2 F3 · · · X

Eric Peterson On Beyond Hatcher!
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Filtration spectral sequence

... extend each inclusion to a cofiber sequence ...

pt F1 F2 F3 · · · X

F1 F2/F1 F3/F2 · · ·

Eric Peterson On Beyond Hatcher!
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Filtration spectral sequence

... and apply the homology functor H∗.

H∗ pt H∗F1 H∗F2 H∗F3 · · · H∗X

H∗F1 H∗F2/F1 H∗F3/F2 · · ·
[−1] [−1] [−1] [−1]

Eric Peterson On Beyond Hatcher!



Introduction
Spectral sequences

Spectra, operads, and delooping

Filtration spectral sequence

Our goal now is to recover H∗X from H∗Fq/Fq−1.

· · · H∗Fq−1 H∗Fq H∗Fq+1 · · ·

H∗Fq−1/Fq−2 H∗Fq/Fq−1 H∗Fq+1/Fq · · ·· · ·

[−1] [−1] [−1] [−1]

x

x̃xq

d1x

d1d1d1d1

xq−1

d2x
d2d2d2

· · ·

· · ·
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Filtration spectral sequence

This process defines groups E r
p,q and differentials

d r : E r
p,q → E r

p−1,q−r . The cohomology of the rth page yields
the (r + 1)st, and the first page is

E 1
p,q = HpFq/Fq−1.

A class x ∈ H∗X always lifts to some class xq in H∗Fq for
q � 0. The smallest such q is the only time xq images to a
nonzero element in the bottom row of the diagram. This
smallest q gives a filtration on H∗X .

With some assumptions, the groups E∞p,∗ are isomorphic to the
associated graded of this filtration on HpX . “The spectral
sequence compares the homology groups of the associated
graded to an associated graded of the homology groups.”
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Atiyah-Hirzebruch spectral sequence

Example: put a cell structure on a connected space X and take
Fq = X (q) the q-skeleton.

pt X (1) X (2) X (3) · · · X

∨
α S

1
∨
β S

2
∨
γ S

3 · · ·

Apply E∗. The d1-differential detects the attaching degree, so

E 2
p,q = Hcell

q (X ;Ep)⇒ EpX .

Basic exercise: Compute H∗(RPn;Z) and H∗(RPn;F2) this way.
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Part 2: Spectra, operads, and delooping
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Spectra

Recall that the functor Hn(−;G ) is representable:

Hn(X ;G ) = [X ,K (G , n)].

Brown representability says this is not an accident: for any
cohomology theory E ∗ there are homotopy types E ∗ with

EnX = [X ,En].

A good thing to do with a functor1 is to try to turn it into an
equivalence: how do we need to restrict / augment the target
to make this happen?

Question: What structure do these spaces E ∗ have?

1N.B.: The Brown construction is not functorial.
Eric Peterson On Beyond Hatcher!
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Spectra

Question: What structure do these spaces E ∗ have?

The Eilenberg-Steenrod axioms yield a natural isomorphism
EnX = En+1ΣX .

[X ,En] = EnX

= En+1ΣX = [ΣX ,En+1] = [X ,ΩEn+1].

The Yoneda lemma says there are weak equivalences

En
'−→ ΩEn+1.

This is a complete characterization: every sequence of spaces
En with connecting maps En

'−→ ΩEn+1 yields a spectrum E .

Eric Peterson On Beyond Hatcher!
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The ∞-category of Spectra

Spaces is more than just a category: you can suspend spaces,
take the homotopy category, build the smash product, and so
on.

We’ve built Spectra in terms of spaces, and so it would be
nice to be able to perform these operations on spectra too.

Theorem: You can! “Spectra is a stable ∞-category with a
symmetric monoidal product ∧ and adjoint functors

Σ∞ : Spaces � Spectra : Ω∞.”

Big idea: Work with spectra rather than cohomology theories,
and study spectra using techniques from algebraic topology.

Eric Peterson On Beyond Hatcher!
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The ∞-category of Spectra

“Stability” means Σ : Spectra→ Spectra is an equivalence.

It is given by the shift operator: ΣEn = En+1. To get the
inverse, Σ−1En = ΩEn = ΩEn.

In particular, this yields “negative-dimensional spheres”:

S−n = Σ−nS0.

The homotopy groups π∗E of a spectrum are Z-indexed.

Eric Peterson On Beyond Hatcher!
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Motivation: K -theory

The space BU × Z classifies stable vector bundles. The
functor it represents is called K (−).

For a cofiber sequence A→ X → X/A, the sequence
K (A)← K (X )← K (X/A) is exact in the middle.

Question: Can K (−) be extended to a cohomology theory
with K (−) = K 0(−)?

K−nX is easy to define:

K−nX = K 0ΣnX = K (ΣnX ).

So, K−n = Ωn(BU × Z).

Refined question: What about Kn? Can we find spaces Kn

with ΩnKn = BU × Z? What conditions does BU × Z = K 0

need to satisfy?

Eric Peterson On Beyond Hatcher!
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The structure of loopspaces

We know is that E 0 is a loopspace: E 0 = ΩE 1. Loopspaces
come with a “multiplication” which is not associative or
unital, but becomes so after relaxing to the homotopy
category.

Pick disjoint subintervals {[ai , bi ] ⊆ [0, 1]}ni=1 and loops
{γi ∈ ΩX}ni=1. Then there is a product

Γ(t) =



γ1

(
t−a1
b1−a1

)
, t ∈ [a1, b1],

...
...

γn

(
t−an
bn−an

)
, t ∈ [an, bn],

∗ otherwise.

This is a family of products (ΩX )×n × An → ΩX .

Eric Peterson On Beyond Hatcher!
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The structure of loopspaces

Subintervals can be nested:

a1 b1 a2 b2

This gives maps (An1 × · · · × Anr )× Ar → An+ .

Spaces together with compatible maps like these are called an
operad. This one is called the A∞ operad.

Spaces like ΩX with multiplications parameterized by an
operad are called algebras over that operad. ΩX is “an
A∞-algebra in spaces” or “an A∞-space.”
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Delooping A∞-spaces

Back to our example HG with HG 0 = G and HG 1 = BG .
Hatcher’s model for BG is a simplicial complex with ...

... one 0-simplex.

... a 1-simplex for each g ∈ G .

... a 2-simplex for each pair (f , g) ∈ G 2, with edges labeled
by f , g , and gf .

gf
g

f
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Delooping A∞-spaces

... a 3-simplex for each triple (f , g , h) ∈ G 3 with edges
labeled to encode the triple project f · g · h.

gf
g

hg

f

h

hgf

... and so on.
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Delooping A∞-spaces

We can mimic this construction for an A∞-space X ; for example,
we’ll show how to produce the 3-simplices in BX .

Start with a path
in A3 showing homotopy-associativity of f · (g · h) ∼ (f · g) · h:

f g h

∗

hgf

∗
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Delooping A∞-spaces

Now, contract the constant edges labeled ∗ to get

g

f g

h

hg

f

Then, if you fold along g and distend, you’ll get...
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(Fold along g and distend to get...)

gf
g

hg

f

h

hgf

The other simplices work similarly.

Then, there is a theorem that
states if π0E 1 = 0, then BE 0 ' E 1 — so the loopspace product is
enough to deloop E 0!
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E∞-spaces and spectra

We can iterate this story: because E 0 = Ω2E 2, it is also an
algebra for the operad of sub-squares in [0, 1]× [0, 1]. This is
called the E2-operad.

More generally, E 0 = ΩnEn, so it is an algebra for the operad
of sub-n-cubes in [0, 1]×n, called the En-operad.

Because it’s an algebra for the En-operad for each n, it’s
called an E∞-space.
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E∞-spaces and spectra

You’ve seen sub-squares before in the proof that π2X is
abelian.

This means that a nonabelian G cannot be an E2-space, since
π2B

2G = π0Ω2B2G = π0G = G must be abelian.

An E1-space is homotopy-associative, an E2-space is
homotopy-commutative, and En-spaces generalize this in the
following sense:

Applying B to an En-space results in an En−1-space.

An E∞-space has an infinite sequence of deloopings.

In fact, the assignment E 7→ E 0 is an equivalence between
connective spectra (π∗<0E = 0) and E∞-spaces.
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A couple extra facts

The functor Ω∞Σ∞X = colimn ΩnΣnX can be thought of as
replacing X with various En-space approximations as n grows,
yielding in the limit an E∞-space / connective spectrum.

An A∞-space is exactly the structure that arises when you
replace a topological group G with a homotopy equivalent
space X and try to transport the product structure to X . In
fact, every A∞-space has a strictly associative model.

Curiously, this is not true for E∞-spaces: there are E∞-spaces
with no strictly commutative model. This is part of what
makes spectra interesting.
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Homework

Do the homework reading! You’ll learn to compute
H∗(K (F2, ∗);F2), called the (dual, unstable) Steenrod algebra.
With spectral sequences and deloopings, you have all the tools
you’ll need.

http://math.berkeley.edu/˜ericp/
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