
ON BEYOND HATCHER!

ERIC PETERSON

In the Fall semester of 2012, Constantin Teleman encouraged me to run a short seminar which would teach
attendees about advanced algebraic topology. UC-Berkeley runs a pair of graduate courses in algebraic topology
which more or less go through Allen Hatcher’s Algebraic Topology, but there is a long road from there to the
forefront of the field. Getting students research-ready inside of four seminar talks is an impossible task, of course,
and so instead my goal is to sketch a picture of some of the major components of the field, so that students know
enough of the flavor of the subject to at least identify whether they’re intrigued by its questions and its methods,
and then further to know where to look to learn more. To reinforce the impression that there’s a lot going on in
algebraic topology, each day will be very distinctly flavored from the others, and no day will require absolutely
understanding any day that came before it. In the same vein, few things will be completely proven, but I hope to
at least define the topological things under discussion. Some knowledge from related fields (algebraic geometry,
primarily) will be assumed without hesitation. Each of these talks is meant to last roughly 50 minutes.

The reader should additionally be warned that, due to my limited worldliness, these notes are bent sharply
toward what I consider interesting. This means that they are highly algebraic, and they make no mention of exciting
geometric things in stable homotopy theory — like string topology, for one example of many.

There are too many people to thank and acknowledge for having taught me enough to write these notes — the
topology community is full of vibrant, welcoming personalities. Any errors in the notes are mine, whether by
miscopying or misunderstanding. I’m happy to incorporate corrections by email at ericp@math.berkeley.edu. The
title of these notes is an allusion to a Dr. Seuss book, On Beyond Zebra! — appropriate for the strange and wonderful
world of algebraic topology.

0.1. Conventions and style. The notes are meant to include definitions and to be largely consistent with the
general standards of the field. Even so, if you find something puzzling, maybe this will help clear things up:

• Limits and colimits will always be interpreted to be∞-categorical / homotopical whenever context allows.
• In this draft version of the notes, footnotes are primarily used for comments and corrections that others and

I have suggested, but which I haven’t yet incorporated into the main body of the text.
• Oftentimes (but perhaps not always), an unadorned “H∗X ” denotes the reduced homology of X . This is

typically denoted eH∗X elsewhere in the literature, but it’s too much hassle to carry around tildes the entire
length of the notes.
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1. DAY 1: THE DELOOPING PROBLEM

As we work our way through these lectures, we’re going to be chiefly concerned with the homotopy groups
of spheres, πp Sq = [S p , Sq]. These groups are now-classical objects in algebraic topology that are tremendously
difficult to compute; it’s widely believed that we’ll never have full information about them.1 On the other hand,
thick-headedness and stubborn determination has told us a little bit, and the size of the sector of groups we under-
stand correlates well with how well we understand the field of algebraic topology as a whole. We’ll study many
tools which aren’t directly related to π∗S

∗ on the face of it, but in the end everything we talk about should result in
some new information about them.

The most basic observation about homotopy groups is that for a fiber sequence (in particular, for a covering
space), there is an induced long exact sequence. Then, the group quotient Z→ R→ S1 gives the computation [14,
Theorem 1.7]

πp S1 =

(

Z when p = 1,

0 otherwise.

Our study begins after this.

1.1. Spectral sequences. The other major invariant available apart from homotopy groups in algebraic topology
are co/homology groups. A homology theory [47, Definition 7.1] is a functor H∗ : Spaces→ GradedGroups satisfy-
ing the Eilenberg-Steenrod axioms:

(1) H∗ is homotopy invariant.
(2) H∗S

0 is known, often abbreviated to H∗.
(3) H∗

∨

αXα =
⊕

α H∗Xα.
(4) H∗ is “locally determined,” to be discussed below.

The most important of these is the locality axiom. It assets that if we apply H∗ to a cofiber sequence, i.e., a sequence
of spaces

A X

X /A,

then we get a long exact sequence

· · ·HnA→HnX →HnX /A→Hn−1A→ ·· · .

Another way to write this is as a triangle of maps

H∗A H∗X

H∗X /A

[−1]

which is exact at every node, and where the map marked “[−1]” incorporates a shift down in degree by 1. This
axiom makes homology an extremely computable invariant; by decomposing a space into two pieces, A and X /A,
the homology of the whole space is in this sense recoverable from the homologies of the individual spaces.

Of course, it is often convenient to decompose spaces into many pieces — a filtration of the space — and so one
might begin instead with a diagram of the following shape:

pt F1 F2 F3 · · · F∞ X .

Now, each of these maps Fi → Fi+1 can be extended to a cofiber sequence by considering Fi+1/Fi like so:

1See Ravenel [36] for a cute quote about this.
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pt F1 F2 F3 · · · F∞ X

F1 F2/F1 F3/F2 · · · .

Applying H∗ to this diagram then yields a sequence of exact sequences

H∗ pt H∗F1 H∗F2 H∗F3 · · · H∗F∞ H∗X

H∗F1 H∗F2/F1 H∗F3/F2 · · · ,
[−1] [−1] [−1] [−1]

and one can ask how to recover H∗X only from these groups H∗Fq+1/Fq . Suppose we have a class x ∈ H∗Fq+1/Fq ,
and we’d like to produce a lift x̃ of x to H∗Fq+1 across the projection map. Since these triangles are exact, this is
equivalent to asking if the image of x in H∗Fq vanishes — call that element xq . However, we’re only supposed to be
studying the groups on the bottom of the diagram, and so we further push xq down to H∗Fq/Fq−1 and test whether
it is zero there. If it isn’t, then there’s no hope for x, which we should discard. If it is, however, then that’s great —
it doesn’t necessarily mean that xq is zero, but it’s enough to define xq−1, a preimage of xq across H∗Fq−1→ H∗Fq .
This process continues until we get all the way down to H∗ pt, where we can finally test whether x0 (and hence xi
for each i ≤ q) vanishes once and for all.

This process assembles into what is called a spectral sequence [49, Section 5.4] [28, Section 2.2]. The groups
Hp Fq/Fq−1 are notated E1

p,q and called the first page of the spectral sequence. The map H∗Fq+1/Fq → H∗Fq/Fq−1

is called d 1 : E1
p,q → E1

p−1,q−1, the first differential. Taking homology (in the sense of the chain complexes of

homological algebra) yields a new collection of groups, called E2
p,q = H∗(E

1
p,q , d 1). This captures the process we

described above: we keep only the classes x whose projected classes xq vanish. The quotient by d 1-boundaries
additionally makes the image of xq−1 in the bottom row independent of the choice of xq−1, and so this element
becomes a new differential d 2x. This fills out the picture above to

H∗ pt H∗F1 H∗F2 H∗F3 · · · H∗F∞ H∗X

H∗F1 H∗F2/F1 H∗F3/F2 · · · ,
[−1] [−1]

d 1

[−1]

d 1

d 2

[−1]

d 1

d 2

In general, the r th page E r
∗,∗ occurs as the homology of the (r − 1)st page, and it carries a differential d r : E r

p,q →
E r

p−1,q−r . Under some mild conditions on the initial filtration F∗, the limiting groups E∞∗,∗ assemble into an associated
graded of the desired groups H∗X — that is, the spectral sequence compares the homology groups of the associated
graded to the associated graded of the homology groups.2

We’ll be using spectral sequences heavily in later days, but not really in the second half of today’s talk, so let’s
do a quick example so that it starts to solidify. A common presentation of a space X in algebraic topology is as a
cell complex: X is written as an increasing sequence of subspaces X (q), each of which is formed by attaching closed
q -disks to X (q−1), the previous subspace [47, Chapter 5]. Together, these give an ascending filtration Fq = X (q) of
X whose filtration quotients are bouquets of q -spheres: Fq/Fq−1 =

∨

α S (q)
α

. Applying H∗ to this diagram yields a
spectral sequence in which the d 1-differential records the degree map — i.e., the differential in cellular homology.
Taking homology against d 1 then yields the cellular homology of X with coefficients in H∗, and the action of the

2A question that came up when delivering this was: can E r
∗,∗ be described in terms of the homology of Fq relative to Fq−r ? I don’t know the

answer, and it seems like maybe this is possible for something like q < 2r , I feel it would be surprising in general.
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rest of the differentials gives the Atiyah-Hirzebruch spectral sequence with signature

E2
p,q =H cell

p (X ; Hq )⇒Hp X , d r
p,q : E r

p,q → E r
p−1,q−r .

1.2. Delooping and operads. Let’s let homological algebra alone for a while and get started on topology. Together,
all cohomology theories span a full subcategory of the category of all functors Spaces→ GradedGroups.3 The Brown
representability theorem [14, Theorem 4E.1] says that E∗ is representable by a graded space4 E∗, and we would
like to characterize the “image” of the Brown representability theorem in the category of sequences of spaces.
Throughout this section, a good example to keep in mind are the Eilenberg-MacLane spaces representing ordinary
cohomology: H n(X ;G) = [X , H Gn] = [X ,K(G, n)].

The key observation is that the suspension axiom for cohomology yields a natural isomorphism

[X , E n] = E nX = E n+1ΣX = [ΣX , E n+1] = [X ,ΩE n+1].

Applying the Yoneda lemma yields an equivalence E n
'−→ ΩE n+1, and every sequence of spaces E n together with

these structure maps E n
'−→ΩE n+1 — altogether called a spectrum — represents a cohomology theory [47, Theorem

8.42].5

The category Spaces comes with more structure than merely being a category: we can also build fiber sequences,
consider the homotopy category, take smash products, and so on. It would be nice to see this structure also appear
in Spectra, since it is assembled from certain sorts of spaces. There are many ways to go about doing this, all of
which require some work but land you at the same place, realizing Spectra as a stable∞-category6 with a symmetric
monoidal product ∧, along with adjoint functors

Σ∞ : Spaces� Spectra :Ω∞.

These functors are so named because of the following composition law: Ω∞Σ∞X = colimnΩ
nΣnX . The main

thing this means is that you should be fearless about doing various homotopical operations on spectra: you can
suspend them, build mapping spaces between them — whatever you like. In fact, this is really the point of working
with spectra rather than with cohomology theories: the cone on a cohomology theory doesn’t make sense, but on
a spectrum it does.

Using these homotopical operations, the graded space E∗ is recoverable from an arbitrary spectrum by the for-
mula E n = Ω

∞Σn E . However, it’s worth asking what structure the bottom-most space E0 has on its own — in
particular, when you can tell that a space X is E0 for some spectrum E? For instance, when people were first
starting to think about K -theory, this was an extremely relevant question: they knew that the space BU ×Z clas-
sified stable complex vector bundles, and they could tell that a cofiber sequence A→ X → X /A would be sent to a
sequence

[A,BU ×Z]← [X ,BU ×Z]← [X /A,BU ×Z]
which was exact in the middle. This leads naturally to the question: does the functor [−,BU ×Z] deserve to be
called K0(−) for some spectrum K — that is, is K -theory a cohomology theory? We can define K−n(X ) by

K−n(X ) = [ΣnX ,BU ×Z] = [X ,Ωn(BU ×Z)],

but what about the positive-degree functors K n? Is it possible to produce spaces K n with ΩnK n =K0?7

The most basic piece of information we have about such a space E0 is that E0 =ΩE1, and so we can begin by in-
vestigating the structure of loopspaces. Recall that a loopspace carries a sort of product defined by the concatenation
of loops, but that this product is neither associative nor unital. Instead, these two properties hold up to homotopy,

3It does turn out that every such natural transformation automatically commutes with the going-around map. This follows from the ability
to rotate the triangle A→X →X ∪C A to another triangle X →X ∪C A→ (X ∪C A)∪C X 'ΣA.

4Rather, graded homotopy type.
5A simple but good exercise is to run through checks of the Eilenberg-Steenrod axioms listed before.
6Include several references with various settings.
7As an aside, Bott periodicity answers this question for periodic K -theory, and Bruno Harris [12] gives a really gorgeous proof.
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a1 b1 a2 b2

FIGURE 1. Composition in the A∞-operad.

and their usual proofs [14, Proposition 1.3] involve sliding intervals around — let’s try to capture the informa-
tion that this proof uses. For each collection of n paths (γ1, . . . ,γn) and n disjoint intervals ([a1, b1], . . . ,[an , bn])
contained in [0,1], we can build the following concatenation:

Γ(t ) =



























γ1

�

t−a1
b1−a1

�

, t ∈ [a1, b1],
...

...

γn

�

t−an
bn−an

�

, t ∈ [an , bn],

∗ otherwise.

Writing An for the configuration space of such collections of intervals, the fundamental tool in the proof then is
that the product on ΩE1 takes the form An × (ΩE1)

n → ΩE1 — it’s actually a family of products, continuously
parametrized by An [42]. Moreover, these products are interrelated: writing n+ = n1 + · · ·+ nr , there are maps
(An1
× · · · ×Anr

)×Ar → An+
describing interval nesting, and altogether this collection of spaces An together with

these maps is called an operad — specifically, the A∞ operad.8 The space ΩE1 with its product so parametrized by
the various spaces An , compatible with the maps between them, is called an A∞-space or an A∞-algebra in spaces.

Let’s return to the example of H G. You may recall that in this setting, the space H G1 ' K(G, 1) is given by
a certain simplicial complex BG [14, Example 1B.7]. The space BG has a single 0-simplex, a 1-simplex for every
point in G, then a 2-simplex joining the edges g , h, and g h to record the relation (g ) · (h) = (g · h), and generally
we attach in n-simplices labeled by length-n products. It turns out that the structure of an A∞-algebra on some
space X is exactly what is required to build such a space BX ; the action of An is what defines the n-simplices [42].
Specifically, recall the picture used to prove homotopy associativity of the product f · g · h in ΩX from figure 2.
By folding and distending appropriately, we can rearrange this into a 3-simplex with edges f , g , and h — again,
the presence of this simplex in the bar complex is meant to record the associativity of the product on X , just as
the diagram of homotopies was. Higher dimensional simplices then encode homotopies between these associativity
homotopies, and so on.9 Finally, there is a theorem stating that in the case of π0E1 = 0, we get BE0 = E1. This is
called “delooping” E0.

Now, we can iterate this story: not only is it true that E0 =ΩE1, but we can further say that E0 =Ω
2E2. Hence,

we can say all these same things again, but with the interval and its subinterval replaced by the square [0,1]× [0,1]
populated with sub-squares. Altogether, these configuration spaces of sub-squares are called the E2-operad, the
configuration spaces of intervals the E1-operad,10 and generally sub-n-cubes the En -operad. Since E0 = Ω

n E n , we
have that E0 is an algebra for each of these operads, so it is called an E∞-space.

You may recognize the idea of sub-squares of [0,1]× [0,1] from the proof that π2X is an abelian group [14,
pg. 340] — this is not an accident, since double-loopspaces appear in that context via the identity π2X = π0Ω

2X !

8More precisely, this is the little intervals model of an A∞-operad.
9To be completely honest about where these simplices come from, this description only holds for discrete G. To handle groups with topolo-

gies, you’ll want to rephrase all this so that, rather than adding in a simplex for each n-tuple of elements, all n-tuples are handled simultaneously
using cartesian products.

10So, at the level of our discussion here, there is an equality E1 = A∞. More literally, A∞ was originally defined by Stasheff in terms of
combinatorial objects called “associahedra,” which is a distinct presentation of the same operad for a suitable notion of operad equivalence.
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Contract the ∗ edges of

f g h

∗

hgf

∗ to get g

f g

h

hg

f
.

Then, fold along g and distend to get
g f

g

h g

f

h

h g f

FIGURE 2. A 3-simplex arising from the A3-action.

What this means for our discussion is that a nonabelian group G, while an E1-space, cannot be an E2-space (since
then π2B2G = π0Ω

2B2G = G is an abelian group). In particular, this means that the group G cannot occur as Ω∞

of some spectrum E . On the other hand, since abelian groups G appear as G = H G0, they do carry an E∞-space
structure. The following statement is an important refinement of this distinction:

Applying B to an En -space results in an En−1-space [27].
The value of an E∞ space, then, is that it has an infinite sequence of deloopings — after all,∞− 1=∞. In fact, by
inductively applying this delooping theorem, one sees that the assignment E 7→ E0 is an equivalence of categories
between connective spectra and E∞-spaces. In this light, the functor Ω∞Σ∞X = colimnΩ

nΣnX is using the functor
Ω to find a sequence of approximations to X which are En -spaces as n grows.

Another cool characterization of these spaces is that an A∞-algebra structure is exactly what arises when replacing
a strictly associative group with a homotopy equivalent space, and in fact every A∞-algebra arises this way — you
can always find a strict group in its homotopy equivalence class. Curiously, this is not true for E∞ spaces; there
are E∞-spaces for which no strictly commutative model exists. However, this is good news: this means that there’s
something to study in connective spectra that isn’t an exact reflection of abelian group theory!11

2. HOMEWORK: THE DUAL STEENROD ALGEBRA

No construction is worth much unless one can compute with it. In this section, we’re going to compute the HF2-
homology of the spaces (HF2)n =K(F2, n) by putting the two ideas from the main lecture — spectral sequences and
delooping — next to each other. Altogether, (HF2)∗HF2∗ is called the (unstable) dual Steenrod algebra. Our method
is based off work of Ravenel and Wilson [38, 50], and there is a separate method due to Serre [41] that’s part of every
algebraic topologist’s education. The odd-primary version of this computation also appears in Wilson’s book [50,
Theorem 8.5], though it is more complicated than the version here and the exposition is more terse than in the still
more complicated Ravenel-Wilson paper [38].12

Before we start trying to fit the pieces of this problem together into a computation, we should first take stock of
what the pieces even are. Suppose that E is a ring spectrum, meaning that there’s a monoid map E ∧ E → E . This

11Two comments that came up in the seminar: the first is that A∞-structures involve only the multiplication, so really this strict model
business is saying we can build a strictly associative monoid. This doesn’t tell you anything about how nicely behaved the inverse map is.
The other comment is that A∞-spaces are more than just loopspaces; an A∞-space X with π0X a group is a loopspace, but generally it’s more
complicated than that.

12Aaron thinks I should define cohomology operations here.
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then induces maps of spaces E n ∧ E m → E m+n , so if we further suppose that H∗ is a homology theory satisfying
H∗(E n ∧ E m) =H∗E n ⊗H∗

H∗E m , we can produce product maps

H∗E n ⊗H∗E m→H∗(E n ∧ E m)→H∗E n+m .

Further supposing that H is a ring spectrum, here’s a complete list [38, Section 3] of the algebraic structures this
yields on H∗E∗:

maps on spaces algebraic structure
multiplication on H   H∗ is a ring, and H∗E n is an H∗-module,

diagonal on E n   ψ : Hp E n→
⊕p

i=0 Hi E n ⊗Hp−i E n ,
addition on E n   ∗ : Hp E n ⊗Hq E n→Hp+q E n ,

multiplication on E   ◦ : Hp E n ⊗Hq E m→Hp+q E n+m .

The final three maps are all H∗-module maps, and moreover the ◦-product distributes over the ∗-product in the
sense that x ◦ (y ∗ z) =

∑

(x ′ ∗ y) ◦ (x ′′ ∗ z) for ψx =
∑

x ′⊗ x ′′. Altogether, this means that H∗E∗ is a ring object in
the category of H∗-comodules, or “Hopf ring”. This greatly rigidifies the shape that H∗E∗ can take; one important
feature is that given just a small handful of explicitly described elements, we can generate a large number of other
elements with all the operations we now have access to [50, pg. 46].

Now we set out to use these operations to give a Hopf ring presentation of H∗E∗. The main tool comes to us as
a spectral sequence [38, Section 2]: suppose first that we understand the homology H∗E n . If E is connective, then
the space E n+1 can be modeled using the bar construction BE n , which comes with a filtration by subspaces (BE n)q
consisting of those simplices with dimension at most q . The filtration quotients (BE n)q/(BE n)q−1 have a nice
description: they are bouquets of q -spheres, labeled by q -tuples of points in G, meaning (BE n)q/(BE n)q−1 'Σq E∧q

n .
This gives a filtration spectral sequence of algebras and we can identify its E2-term as

E2
∗,∗ =TorH∗E n

∗,∗ (H∗, H∗)⇒H∗E n+1, d r
p,q : E r

p,q → E r
p+r,q−r+1.

Since H∗ carries ∧-products of spaces to ⊗-products of modules, H∗ turns the bar construction on spaces into a
bar construction on the algebras. An incredible and non-obvious feature of all this is that the ◦-product respects
this filtration [38, Section 1], so we can act on the pages of the spectral sequence using it. This means that by
writing classes x as x = x ′ ◦ x ′′, we can propagate differentials in the previous spectral sequence acting on x ′ to new
differentials acting on x by the formula d x = d (x ′ ◦ x ′′) = (d x ′) ◦ x ′′.

From here on out, we will strictly concern ourselves with H =HF2 and E =HF2; to remind you, our goal is to
compute H∗E∗. We will proceed by an induction, so we need some initial input. First, we recall the homology of
RP∞ = E1 from Hatcher [14, Theorem 3.12, Section 4.D]. As graded algebras, there is the description

H∗RP∞ =Γ[a] =
⊗

i≥0

T [a(i)],

where T [x] denotes the truncated polynomial algebra F2[x]/〈x2〉, and Γ[x] = F2{1, x[1], x[2], . . .] denotes the
divided power algebra with x[i]x[ j ] =

�i+ j
i

�

x[i+ j ], and where we write a(i) for a(i) = a[2
i ] with degree |a(i)|= 2i . The

coproduct on H∗RP∞ is given by ψa[n] =
∑n

i=0 a[i]⊗ a[n−i].
We also want to analyze the behavior of the bottom spectral sequence TorF2[Z/2]

∗,∗ (F2,F2)⇒H∗RP∞ to be used as
base case input to the induction. First, note that there’s an isomorphism F2[Z/2]∼= T [〈1〉], where 〈1〉 denotes the
class [1]−[0]. Then, using the bar construction or any other method you like, we can compute TorF2[Z/2]

∗,∗ (F2,F2)∼=
Γ[σa], where σ denotes the suspension map, or [a] in the bar construction. By counting classes, we see that the
graded components of this Tor contain exactly as many elements as there are in H∗RP∞, and so it must be that the
spectral sequence collapses at E2, with no differentials.

We are now prepared to begin the inductive step. Our goal is to show that H∗E n+1 is generated freely by q -fold
◦-products. For an index I = (I1, . . . , In), let’s write aI = a(I1)

◦ · · · ◦ a(In )
, and suppose that we’ve shown

H∗E n =
⊗

|I |=n

T [aI ].
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The input for the next spectral sequence computing H∗E n+1 is then

TorH∗E n
∗,∗ (F2,F2) =

⊗

|I |=n

TorT [aI ](F2,F2) =
⊗

|I |=n

Γ[aI ].

We want to use the ◦-action to our advantage, which means writing a[2
j ]

I in terms of a ◦-product. This is most
conveniently done with a throw-away tool: define the Verschiebung V as the continuous linear dual of the Frobenius
x 7→ x p residing on the dual Hopf algebra — in words, V seeks terms of the form x ′⊗· · ·⊗ x ′ in ψp−1x, i.e., it takes
pth roots. This interpretation justifies the computation V (a[p j+1]) =V (a[p j ]) and hence V (a(i)) =V (a(i−1)). What’s
more is that it too is compatible with the ◦-product: V (a ◦ b ) =V a ◦V b .

Using these facts together, we can pull apart a[2
j ]

I as a[2
j ]

I ≡ a[2
j ]

Ĩ
◦ a(In+ j ) modulo the kernel of the j th iterate of

the Verschiebung, which follows from

V j ((aI )
[2 j ]) = (aI ) = (aĨ ) ◦ aIn

=V j ((aĨ )
[2 j ]) ◦V j (a(In+ j )) =V j ((aĨ )

[2 j ] ◦ a(In+ j )),

where Ĩ denotes Ĩ = (I1, . . . , In−1). Since this rewriting method applies to all the elements in our E2-page, this means
that all differentials in this spectral sequence arise by tacking on−◦aIn+ j to an old differential13 — but as the previous
spectral sequence had no differentials, this one must not either! Hence, it collapses at E2, and furthermore there are
no additive extension problems since we’re working over a field.14 In all, this means that H∗E n+1 =

⊗

|I |=n+1 T [aI ].
From the unstable description, we can further read off the stable algebra structure [50, Theorem 8.15]: writing

ξn = a(n) and following the homology suspension maps shows that (HF2)∗HF2 = F2[ξ1,ξ2, . . .].15 One thing we
can’t read off of this presentation is the coproduct structure. The formalism of the spectral sequence respects the
coproduct, but we’ve been silently introducing correction terms to a[2

j ]
I by identifying elements modulo the kernel

of an iterate of the Verschiebung, so we’ve lost this information.16 Even so, it’s so important that we are obligated
to record it. If you’d like something to puzzle over for next time, meditate on the meaning of this formula:

ψξn =
n
∑

i=0

ξ 2i

n−i ⊗ ξi .

Where might you see it in the wild?

3. DAY 2: STABLE HOMOTOPY AND FORMAL LIE GROUPS

The higher homotopy groups of a space have an interesting stabilization property, due to Freudenthal: πp Sq =
πp+1Sq+1 for 2q − 1 > p, with a similar property for a general space X dependent upon its connectivity.17,18

For comparison, the axioms for homology show that Ep X = Ep+1ΣX for each p, completely independent of the
connectivity of X . Our goal for the time being is to make sense of this early stabilization in homotopy groups, and
to compare it to the general theory of homology.

Before we get into the thick of things, it will be helpful to have a second example of a homology theory: the
theory of complex bordism, written M U . The way we’ll explain it is a bit abstruse, but it’s for a good cause —
so hang on. Notice first that we can generalize our notion of suspension ΣX of a space X by considering instead
a spherical fibration Sn → Y → X — this is sort of a suspension of each point in X individually. Then, to make
this into a suspension of X collectively, notice that there are two sorts of “coning off” operations we can perform:
we can cone off each fiber on its own (yielding a disk bundle over X ), and we can cone off the whole bundle at
once. Performing both of these operations one after the other yields a new space T Y , called the Thom space of

13Inductively, this shows that you can pull the −[2 j ] all the way inside, where it becomes a ◦-factor of a( j ).
14There are also no multiplicative extension problems, because the Frobenius vanishes. You can see this just from the map 2 on K(Z/2,∗)

vanishing. See pg. 55 of Wilson [50].
15This method can be used to compute these algebras at other primes too, though the answers are more complicated. Stably, one finds

(HFp )∗HFp = Fp[ξ1,ξ2, . . .]⊗Λ[τ1,τ2, . . .], where |τi |= 2 p i − 1.
16Is this true? Are you just being lazy?
17Aaron suggests drawing the suspension map.
18Cite Kevin’s book.
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Y [51, Theorem 20.5.4]. In the case that Y = Sn ×X , the associated Thom space T Y is homeomorphic to the
ordinary suspension Sn+1X , and when E is a more complicated bundle, T Y is thought of as a twisted suspension of
X . This construction turns out to be useful primarily because there are sources of spherical bundles lying around:
for instance, one can take a vector bundle over a compact manifold and put a metric on it, giving a bundle of unit
spheres and unit disks.

Last time, we talked about how to produce cohomology theories from spectra by the representability formula
E nX = [X , E n]. To produce a homology theory from a spectrum, the formula looks a bit different: E−nX =
π0(E∧Sn∧X ). There is a helpful analogy between the smash product of spectra and the tensor product of modules:
applying −∧ E to a spectrum is like base-changing it to E -coefficients, as in replacing M with M ⊗ R. To connect
with the Thom construction, one can think of E∧Sn∧X as a (shifted) untwisted E -line-bundle over X . A spherical
bundle Y over X is said to be E -oriented when there is an isomorphism E ∧ Sn ∧X ' E ∧ T Y — literally, E is
“untwisting” the twisted suspension specified by the bundle. More generally, E is said to be oriented against C-
bundles when it orients every spherical bundle in a collection C, like those coming from complex vector bundles.
The spectrum M U is designed to be universal among those ring spectra which are complex-oriented — in case you
didn’t read the homework, a ring spectrum E is a spectrum which carries a monoid multiplication µ : E ∧ E → E
and a unit η : S→ E . This means that any complex-oriented ring spectrum E receives a ring map M U → E .

3.1. Simplicial algebraic geometry. Let’s focus on drawing out controlling structure in homology functors, illu-
minated by the language of algebraic geometry. Suppose that E is a ring spectrum, so that E∗ is a ring and E∗X is an
E∗-module; the action of e ∈ En on x ∈ EmX is given by

Sn+m ' Sn ∧Sm e∧x−→ (E)∧ (E ∧X )
µ∧1
−→ E ∧X .

To get in the groove of using geometric language, an algebraic geometer would equivalently say that the homology
functor E∗(−) takes values in quasicoherent sheaves E (−) over the affine scheme Spec E∗ [13, pg.111].19

That’s all well and good, but it appears to buy us very little. In the example E = HF2, the scheme SpecF2 is
very small — too small to give us any interesting statements about the structure of its category of sheaves. On the
other extreme is E =M U , where one computes [32, Theorem 6.5] that M U∗ =Z[x1, x2, . . .] has frighteningly many
prime ideals — meaning that the scheme Spec M U∗ is far too large to be tractable, especially when SpecZ[x] alone
is already an incredibly deep and challenging object in arithmetic geometry.

Both of these problems turn out to be fixed when we take homology cooperations into account. Suppose that X
is a space with homology given by E∗X =π∗E ∧X . Then, there is a map

E ∧X
'−→ S∧ E ∧X

η∧1∧1
−−→ E ∧ E ∧X ,

which under a certain flatness condition on E∗E [47, Theorem 17.8] yields on homotopy groups a map

E∗X →π∗(E ∧ E ∧X )
∼=←− E∗E ⊗ E∗X ,

a sort of E∗E -coaction on E∗X . To organize this under algebraic geometry, consider the following table, whose
columns we will explain in turn:

S∧ E
η∧1
−→ E ∧ E , A

ηL−→ Γ, X0
dom←−X1,

E ∧S
1∧η
−→ E ∧ E , A

ηR−→ Γ, X0
cod←−X1,

E ∧ E
µ
−→ E , Γ ε−→A, X1

id←−X0

E ∧S∧ E
1∧η∧1
−−→ E ∧ E ∧ E , Γ ∆−→ Γ⊗AΓ, X1

◦←−X1×X0
X1,

E ∧ E
τ−→ E ∧ E , Γ

χ
−→ Γ, X1

(−)−1

←−−X1.

19Aaron suggests explaining the correspondence between modules and quasicoherent sheaves.
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The left column contains a small garden of maps of spectra we can write down using the ring structure on E . Then,
setting A= E∗ = π∗E and Γ = E∗E = π∗E ∧ E , the maps in the middle column come from applying the functor π∗
to the left column; the vague flatness we were assuming ago is that ηR is a flat map for E∗E considered via ηL as an
E∗-module.20 Finally, setting X0 = SpecA and X1 = SpecΓ, the right column are the same maps viewed under the
functor Spec. This last column is where the most familiar structure is visible: these are exactly the maps you would
want to make the pair (X0,X1) into a groupoid object calledME , and indeed this turns out to be the case. Dually,
the structure in the middle column is said to make (A,Γ) into a “Hopf algebroid” [35, Appendix A.1]. As for our
sheaf E (X ) over Spec E∗ = X0, the extra information in X1 gives us a means to move around in X0 by following
arrows in the groupoid. The Γ-coaction on E∗X is precisely the data needed to make E (X ) compatible with this
movement: it makes E (X ) an X1-equivariant sheaf.21

What turns out to be really interesting isMM U ; it’s sort of the example to rule all other examples. It turns out22

that complex orientability of E is equivalent to requesting that there exist an isomorphism E∗CP∞ ∼= E∗¹c1º for
some generator c1 ∈ E2CP∞, a generalized first Chern class. The Yoneda lemma says that the tensor product of
line bundles induces a multiplication CP∞ ×CP∞ → CP∞, which in turn induces another multiplication GE :=
Spf E∗CP∞ ∼= Â1 [45, Example 8.18]. This scheme GE is called a (commutative, 1-dimensional) formal Lie group.23

This gets its name from considering the Taylor expansion at the identity of a classical Lie group: one gets a power
series, i.e., a function on a formal neighborhood of the identity, satisfying the various group axioms. One can
construct a moduliMfg of formal Lie groups, and since M U itself is complex-oriented, there’s a mapMM U →Mfg.
A primal theorem in stable homotopy theory is that this is an isomorphism [32, Theorem 6.5]: X0 for M U is the
moduli of formal group laws and X1 acts by coordinate changes.

This is really remarkable: we’ve found a functor MU from the stable category to sheaves on the moduli of
formal groups, which is some well-studied object in arithmetic geometry. One of the real prizes of stable homotopy
theory is that we can also move in the other direction. To understand that statement, one of the great things about
our definition of an A∞-space is that we can swap out “space” for various other objects, like “ring spectrum.” It
turns out that M U is an A∞-ring spectrum (as is HF2), meaning that we can form the cosimplicial spectra X and M
with n-cosimplices given by

Xn =

n+ 1 copies
︷ ︸︸ ︷

M U ∧ · · · ∧M U , Mn =

n+ 1 copies
︷ ︸︸ ︷

M U ∧ · · · ∧M U ∧X .

Note that X0 and X1, along with their cosimplicial structure maps, agree with those above. Applying π∗ to the
levels of these objects gives a cosimplicial module over a cosimplicial ring; we denote the associated sheaf over the
associated simplicial schemeMU (X ) andMM U respectively. In this way, we get a spectral sequence24 — the Adams
spectral sequence25 — again arising from the skeletal filtration:

H ∗(MM U ;MU (X ))⇒π∗X
∧
M U .

Here, X ∧M U is the totalization of the cosimplicial spectrum M , called the M U -nilpotent completion of X . To make
this useful, here are two more central theorems in stable homotopy theory:

(1) One can identify H ∗(Mfg;MU (X )) with Ext∗,∗
M U∗M U -comods

(M U∗, M U∗X ), allowing computations [18,

Proposition 11.6] [35, Appendix A.1].
(2) There is a weak equivalence S∧M U ' S [34, Example 1.16].

20It is a healthy exercise to check this.
21Whole rest of this paragraph is COCTALOS.
22The primary thing in this argument is the splitting principle, which says that given any (complex) vector bundle V → X , one can build a

map Y →X which is injective on cohomology and along which V pulls back to a sum of line bundles.
23Expand this explanation.
24Haynes? If not Haynes, then Behrens.
25For M U , this is sometimes called the Adams-Novikov spectral sequence.
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FIGURE 3. E2-page for the HF2-Adams spectral sequence. Thin lines denote multiplication by 2
and by η, thin arrows denote differentials. Label elements? Identify some groups?

�
• ◦ • ◦ • ◦ • ◦ •
• • •• • • •• ••
• •• • • •••
• • •

•

FIGURE 4. E2-page for the 2-local M U -Adams spectral sequence. Thick lines denote multiplica-
tion by η, thin arrows denote differentials. Label elements?

Analogues of these facts are also true for HF2, where S∧HF2
' S∧2 is the 2-adic sphere. To help see what these spectral

sequences do, look to figures 3 and 4 for pictures of their E2-terms [33, pp. 412, 429]. Just their appearances are
already fairly striking: the HF2-Adams spectral sequence

3.2. Qualitative arithmetic geometry ofMfg. In order to make serious use of the M U -Adams spectral sequence,
we should collect as many facts as we can aboutMfg. It will be helpful to work one prime at a time, so from here on
localize everything at a prime p — ideally p would be also be odd, but that’s not so important at this level of detail.
Our first goal is to find a smaller presentation ofMfg; it turns out that the sheaf cohomology H ∗Mfg is sensitive
only to the homotopy types of the groupoids output by this groupoid-scheme, and not their actual collections
of objects and arrows — this is essentially asserting that we are interested in the stack cohomology of Mfg [18,
Theorem 12.1] [30, Section 1]. So, if we can find smaller presentations of the same groupoids, we’ll stand a better
chance of computing things with fewer elements flying around.

We approach this by considering the tools used to analyze the groups classified by Mfg. One common tool
when working with an ordinary group G at a prime p is to study its p-torsion G[p]. For us, this corresponds to
producing from a formal group law x +G y its p-series

[p]G(x) =

p times
︷ ︸︸ ︷

x +G · · ·+G x,

and considering the vanishing locus G[p] = Spf R¹c1º/[p](c1) of [p](c1). Over a field of characteristic p, it’s
possible to solve coefficient-by-coefficient for a coordinate-changing power series γ such that the p-series for x+G y
transported along γ takes the form

[p]γ ·G(x) = p x +G

∞
∑

q=1
G vq x pq

.
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This process is called p-typicalization, and we can use it to find the smaller presentation we want. It turns out that
every p-typical curve is realizable as the p-series for some formal group, and so we may take A = Z(p)[v1, v2, . . .]
and Γ the moduli of invertible power series preserving p-typicality as our presentation [15, Theorem 15.2.9].

Of course, both A and Γ in this new presentation are infinitely generated, and so at a glance it may not seem like
we’ve accomplished much of a reduction. In fact, we’ve gained a lot: let’s call the first q such that vq is nonzero
the “height” of G, which roughly encodes the size of G[p]. The simultaneous vanishing locus of vi for i < q
determines a closed substackM≥q

fg
ofMfg of those formal groups of height at least q , corresponding to the ideal

Iq = 〈p, . . . , vq−1〉. Despite both our original and our new presentations having an enormous number of prime
ideals, it turns out that these ideals Iq are the only ones which are closed under the Γ-coaction — meaningMfg has
a unique closed substack of codimension q for each q , each contained in the next [50, Theorem 4.9]. This is quite
informative as to how the geometry of this object behaves.

3.3. Reflection in topology. From here, we can potentially spend our time in two ways. One is to compute as
much as we can of H ∗Mfg and embark on a detailed study of the M U -Adams spectral sequence in order to make
elementwise statements about the stable homotopy groups of spheres [35, Chapters 4, 5]. This is now possible,
given the smaller presentation, but it is very hard and somehow very old school. Of course, it’s also very rewarding
since we directly get the information we’re after, and so we’ll spend some time discussing this in the next homework
reading. Another approach we might take is to bank on the notion that the stable homotopy category and the
category of sheaves onMfg are very tightly connected. Following this idea, we might try to reproduce the tools
used in the study ofMfg inside of the stable homotopy category itself.

The first result in this direction is that our smaller presentation has a realization in topology: there is a map
M U →M U selecting a formal group law whose p-series is the universal p-typical p-series given above [31, Theorem
4]. The image of this map is a ring spectrum BP , called Brown-Peterson theory, with BP∗ = A and BP∗BP = Γ
for the smaller A and Γ we found. The next result is the Landweber exact functor theorem, which states that if
Spec R→Mfg is a flat map of stacks, then the pullback of the sheafMU (X ) to Spec R defines a homology theory
(and, in particular, Spf R∗CP∞ is the classified formal group) [18, Theorem 21.1].26 Recall that we have at hand
some interesting substacks ofMfg:

M≥q
fg
= (SpecA/Iq )//SpecΓ,

M q
fg
= (Spec v−1

q A/Iq )//SpecΓ,

M<q
fg
= (Spec v−1

q−1A/〈vq , vq+1, . . .〉)//SpecΓ.

These stacks are closed, relatively closed, and open respectively.27 Open immersions are flat, so restriction toM<q
fg

yields a cohomology theory E(q − 1), called Johnson-Wilson theory, with coefficient ring Z(p)[v1, . . . , vq−2, v±q−1].
This open substack is thought of as the complement to its closed partner, in the sense that if a sheaf vanishes on
it then the sheaf’s support must lie inM≥q

fg
.28 The substackM q

fg
can also be realized by coning off each of the vi

from E(q) in turn, yielding K(q) with K(q)∗ = Fp[v
±
q ], called Morava K -theory.

As a quick aside, this same program also explains the description of the diagonal on the Steenrod algebra given in
the previous homework [18, pp. 22-23]. Since HF2 is complex oriented, this whole discussion informs us that we
should seek out power series preserving the formal group GHF2

, i.e., power series ξ satisfying ξ (s+ t ) = ξ (s)+ξ (t ).
These are exactly those power series of the form ξ (t ) =

∑∞
t=0 ξi t 2i

, with the convention that ξ0 = 1. They obey the

26This is typically stated in terms of “regular sequences”: when R is a p-local ring, then this is equivalent to asserting that multiplication by
vn on R/In is a monomorphism.

27Constantin would like to know why this last one is open.
28What exactly is this acyclicity statement? What’s a reference?
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SpecFiniteSpectra

SpecZ
〈0〉

〈2〉 〈3〉 〈5〉 · · ·
C0

C(2),1 C(3),1 C(5),1

C(2),2 C(3),2 C(5),2

...
...

...

C(2),∞ C(3),∞ C(5),∞

· · ·

· · ·

· · ·

· · ·

FIGURE 5. A diagram of the points in SpecFiniteSpectra. Lines indicate that the above ideals are
contained in the closure of the bottom one.

composition law

ξ (ζ (t )) =
∞
∑

i=0

ξi







∞
∑

j=0

ζ j t 2 j







2i

=
∞
∑

i=0

ξi







∞
∑

j=0

ζ 2i

j t 2i+ j






=
∞
∑

n=0

 

n
∑

k=0

ξkζ
2k

n−k

!

t 2n
,

and after some rearranging the formula for the Steenrod diagonal appears.
With these cohomology theories in hand, we can also state result mimicking the ideals Iq in the p-local finite

stable homotopy category. A full subcategory C⊆ FiniteSpectra will be said to be...29

• ... thick if it is closed under weak equivalences, retracts, and cofiber sequences.
• ... an ideal if x ∧ y is in C for each x ∈ C and y ∈ FiniteSpectra.
• ... a prime ideal if x ∧ y ∈ C forces at least one of x or y to lie in C.

The homology theory K(q)∗ determines a functor from FiniteSpectra to the⊗-category of graded vector spaces over
the ground field K(q)∗. The “kernel” of this functor — the full subcategory spanned by K(q)-acyclics — forms a
thick prime ideal denoted Cq . It turns out that there is a proper inclusion Cq+1 ( Cq , and that this is a complete
enumeration of all such ideals — they all appear as K(q)-acyclics for some q . With this, we can draw a picture of the
spectrum of FiniteSpectra; see figure 5 [6, Section 9].

There are a number of further characterizations of these categories Cq , all conjectured by Ravenel [34, Section
10] and most proven by Devinatz, Hopkins, and Smith [9, 20, 37], collectively called the nilpotence conjectures.
All of them are interesting, but here is the most interesting one [20, Theorem 9]: a finite spectrum F belongs to Cq

if and only if F admits a map v :Σ2 pN (pq−1)F → F satisfying

K(m)∗v =







v pN

q if m = q ,

0 otherwise

for some N � 0. This is the beginning of a deep and interesting periodicity phenomenon in stable homotopy
theory, explored more fully in tonight’s homework reading.

29I recall an old Demazure reference that described the geometric space associated to a category sufficiently near to a category of modules.
That would make a good reference.
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4. HOMEWORK: THE CHROMATIC SPECTRAL SEQUENCE

Let’s use the descending chain of substacksM≥q
fg

we found to organize the computation of H ∗Mfg. First, we

can rephrase this problem in terms of group cohomology, which will be slightly more manageable. Taking global
sections ofMU (X ) along with its X1-action gives a module M =MU (X )(X0) = M U∗X together with an action
by G :=X1(X0). Specifically, the action of g ∈G is given by the composite

M U∗
coact−−→M U∗⊗M U∗

M U∗M U
1⊗g
−→M U∗⊗M U∗

M U∗→M U∗.

A theorem of Morava [30, Section 1] says that the sheaf cohomology H ∗Mfg is isomorphic to the group cohomol-
ogy H ∗(G; M ). Computing group cohomology is of course still very hard, but at least we can say what H 0(G; M )
is: the G-invariants in M . However, one quickly shows that this is just Z(p), which is not much — the only nonunit
present is p.

Our goal is to produce all the elements of cohomology that we can in order to populate the spectral sequence.
Having found a way to produce p, we can delete it and see if we can find something else. This is accomplished using
the short exact sequence

M
·p
−→M →M/p.

Taking group cohomology, this induces a going-around map H 0(G; M/p)→ H 1(G; M ), and so we’re tasked with
computing more invariants. It turns out that H 0(G; M/〈p〉) = Fp[v1], and so we apply the connecting homomor-
phism to produce potential new elements αm = ∂ v m

1 in H 1(G; M ). This pattern continues: there’s a sequence

M/Iq−1

·vq−→M/Iq−1→M/Iq

and a calculation H 0(G; M/Iq ) = Fp[vq], yielding “Greek letter” elements α(q)m = ∂ · · ·∂ v m
q ∈ H q (G; M ), where

α(q) is a stand-in for the qth Greek letter. With slightly more generality, we can consider global functions on an
infinitesimal thickening ofM≥q

fg
in the parent stackMfg; these correspond to regular ideals

I J
q = 〈p

J0 , v J1
1 , . . . , v

Jq−1

q−1〉.

The same procedure with the connecting homomorphisms applies to give elements called α(q)
m/J

.30 In all, these
constructions give us access to a large number of potential elements in H ∗(G; M ) [35, Theorem 5.1.3, 5.1.19].

Having uncovered this much, we now try to organize our procedure with the hope of incorporating more than
the elements α(q)

m/J
. Taking a colimit over Jq in the individual quotient sequences yields a parent sequence

M/I∞q−1→ v−1
q M/I∞q−1→M/I∞q

containing all their information. Applying group cohomology to these new short exact sequences and then splicing
the results together yields the chromatic spectral sequence [50, 4.59] [29, Section 3], with signature

E∗,∗,q1 =H ∗,∗group(G; v−1
q M/I∞q ) ⇒ H ∗,∗group(G; M ) =H ∗,∗

sheaf
Mfg.

To recap, we’ve carved up the problem of computing H ∗Mfg into computing the cohomologies of various other
sheaves and stitching them together via a spectral sequence. It would be nice to better understand exactly what it is
we’re computing as input to this spectral sequence, i.e., to study the group cohomology appearing at a fixed q =Q.
It would in particular be nice to see that we have in fact made the problem simpler.

Well, Mq = v−1
q M/I∞q is an ideal sheaf on Mfg selecting the universal infinitesimal thickening of M≥q

fg
, to-

gether with the condition that we consider only points of height exactly q . This turns out to agree with the uni-
versal deformation space (Eq )∗ of Hq , the Honda formal group over SpecFpq [v±q ] characterized by its p-series

[p]Hq
(x) = vq x pq

.31 Acting by changes of coordinate corresponds to acting by the automorphisms of Hq : each
automorphism of the deformation restricts to an automorphism of Hq , and each such automorphism of Hq extends

30To get a sense of what these elements are, the element αm/ j satisfies pαm/ j = αm/( j−1).
31???
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to an automorphism of (Eq )∗ by universality [44, Section 24]. These lifted automorphisms turn out to be easy to
characterize: they correspond to the units Sq of Oq , the noncommutative polynomial ring

Oq =WFpq 〈S〉/
�

Sw = wφS,
Sq = p

�

,

where φ denotes a lift of the Frobenius on Fpq to the ring of Witt vectors WFpq and the element S acts on Hq

by x 7→ x p [35, Theorem A2.2.17]. This group Sq is called the qth Morava stabilizer group, and in all gives the
identification

H ∗,∗(G; v−1
q M/I∞q ) =H ∗,∗(Sq ; (Eq )∗).

This description turns out to be very powerful; the most important thing is that multiplication by vq in (Eq )∗
is invertible, which is the primary fountainhead of periodicity results. Following on from the realization results
from the main lecture, the deformation space (Eq )∗ is also Landweber exact as an M U -algebra, and so it yields a
cohomology theory Eq called Morava E -theory [21, Section 1.1].32

5. DAY 3: COMPUTATIONS WITH THE EHP SPECTRAL SEQUENCE

I’ve been pushing the intricate computational parts of algebraic topology into the reading so far, but because it’s
such a crucial part of what it feels like to actually do work in this field, I wanted to spend at least one day doing a
computation together. In the lectures, I’ll be drawing a lot of intermediate stages on the board. For those of you
reading at home, it will be extremely helpful to get a sheet of graph paper to keep track of where you are in the
computation and which groups are under discussion.

5.1. Basic facts. Today we’ll consider how we can use what we’ve learned so far to produce unstable homotopy
groups of spheres. There’s one major fact that we’re going to assume: there exists [22] a 2-local fibration

Sq E−→ΩSq+1 H−→ΩS2q+1.

The map E is adjoint to identity on ΣSq via the exponential adjunction. The map H denotes something called the
Hopf invariant — the exact action of the map won’t be so important. We have one of these for each q ∈N, and we
can put them together into an unrolled exact couple like so:

pt ΩS1 Ω2S2 Ω3S3 · · · Ωq Sq Ωq+1Sq+1 · · · QS0

ΩS1 Ω2S3 Ω3S5 · · · Ωq S2q−1 Ωq+1S2q+1 · · · .

The going-around map in each triangle is denoted P , for Whitehead product.33 Applying π∗ to this diagram yields
a spectral sequence, creatively titled the EHP spectral sequence34, with signature

E1
p,q =πp+q S2q−1⇒πS

p , d r : E r
p,q → E r

p−1,q−r .

A great many facts about the homotopy groups of spheres can be written into the organizational context of this
extremely interesting spectral sequence. Let’s begin with the most basic one we started with on the very first day:
we computed the homotopy groups of S1. This means that we know about the bottom row of the EHPSS:

E1
p,1 =

(

Z when p = 0,

0 otherwise.

32There must be a reference that just covers Landweberness...
33VFOS notes, maybe.
34Sometimes “EHPSS,” for maximum compactness.
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Putting together H∗S
2q−1 and the Hurewicz theorem, we also know two more facts:

E1
p,q =

(

0 when p < q − 1,

Z when p = q .

5.2. The orthogonal spectral sequence. Now that we have some classes column-adjacent to each other, the next
thing to do is to try to produce differentials in this spectral sequence. The easiest way to produce differentials in any
spectral sequence is through sparseness — if we know that the spectral sequence has to play out in some particular
way, this often forces the existence of a certain pattern of differentials. Our spectral sequence is not at all sparse, but
we can import differentials in by finding another spectral sequence with a map to (or, more difficultly, from) this
one [35, Theorem 1.5.13].

To produce a map of spectral sequences, we should look for a sequence of maps X → Ωq Sq , i.e., some source of
based self-maps of Sq . One way to produce unbased maps of Sq−1 is to begin with an orthogonal automorphism
M ∈O(q) of Rq , then use M to get a map S(Rq )→ S(Rq ) from the unit sphere to itself. Taking a single suspension
of this map gives a based map Sq → Sq , and this process assembles into a continuous map O(q)→ Ωq Sq . It turns
out that this extends to a map of fiber sequences:

O(q) O(q + 1) Sq

Ωq Sq Ωq+1Sq+1 Ωq+1S2q+1.

These top sequences fit together to give an unrolled exact couple, and taking homotopy again induces a spectral
sequence, called the orthogonal spectral sequence, with signature

E1
p,q =πp Sq ⇒πp O, d r : E r

p,q → E r
p−1,q−r .

The map of spectral sequences converges to a map J : πnO → πnS, called the J -homomorphism [35, Theorem
1.1.12].

Let’s work to produce a differential in the orthogonal spectral sequence. We also have another bunch of com-
muting squares

RPq−1 RPq

O(q) O(q + 1),

Sq

Sq

where the map RPq−1→O(q) is given by sending a point x ∈RPq−1 to the reflection along the corresponding line
in Rq . However, the top sequence is a cofiber sequence, so it does not give a spectral sequence in homotopy, and
hence we have to be more creative about how we make use of it. Both of the rows can be rotated once to the left,
the top sort of by accident and the bottom because it’s a fiber sequence, to produce

RPq−1 RPq

O(q) O(q + 1).

Sq

Sq

Sq−1

ΩSq
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The miracle is that the dashed map exists, making the square commute: it is the inclusion of the bottom cell. We
want to use this to say something about the d 1-differential in the orthogonal spectral sequence, so we stitch in the
next rectangle to put everything in one picture:

RPq−1 RPq

O(q) O(q + 1).

Sq

Sq

Sq−1

ΩSq

RPq−2

O(q − 1)

Sq−1

Sq−1

The two new horizontal maps in the back are, respectively, 1+ (−1)q−1 and the d 1-differential in the orthogonal
spectral sequence. From this, we can see that the action of d 1 in the orthogonal spectral sequence on the group
E1

p+1,q =πp+1Sq →πp Sq−1 =πp E1
p,q−1 is given by multiplication by 1+(−1)q−1 — the degree of the attaching map

in the CW presentation of RP∞, also called the cellular differential. In turn, this maps to the EHPSS to induce the
same pattern of differentials there, finally resulting in the computation E2

2,2 = E∞2,2 = Z/2. There is nothing else in
the q = 2 column, so this means πS

2 =Z/2.

5.3. Stabilization feedback. The next major feature of the EHPSS comes from the Freudenthal suspension theo-
rem, mentioned at the very beginning of the previous talk.35 This theorem implies that E1

p,q =π
S
p−q for p < 3q−3.

In turn, this means that the diagonal of Z entries in the EHPSS is part of a larger pattern: there is an infinite se-
quence of diagonals, each beginning slightly farther out than the one previous. We just computed πS

2 = Z/2, and
so we can propagate this result along that diagonal to fill out many entries in the spectral sequence. In turn, this
completes the p = 2 column. One must show that the are no differentials entering this column, but it turns out
that there aren’t any, which means πS

3 =Z/2, filling out another stable ray.

5.4. Truncation feedback. We now come to an important feature of the spectral sequence that allows us some
access to unstable information. Rather than considering the full filtration producing the EHPSS as above, we can
instead stop the filtration at a selected level Q;36 this produces a spectral sequence of signature

E1
p,q =

(

πp+q S2q−1 when q ≤Q,

0 when q >Q,
⇒πp+Q SQ d r : E r

p,q → E r
p−1,q−r .

Setting Q = 3 shows that the p = 2 column converges to π5S3 as well, so that π5S3 = Z/2. This group appears in
the spectral sequence as E1

3,2, which completes the p = 3 column. Another application is that we can set Q = 2;
since the row q = 1 is largely empty, this means all but the bottom of the unstable groups π2+∗S

2 appear as E1
∗,2, and

so we can begin to read off the unstable homotopy groups of S2 as we go along.37 One cool thing that can happen
when truncating the spectral sequence is that we can delete the source of a differential, meaning that what was target
of the differential can accidentally survive. This accounts for the spurious classes seen in the unstable homotopy
groups of spheres, which grow (as Q increases) and shrink (as differentials come into play) before settling down at
the stable stems.

Next, using the computation of πS
3 from the ANSS, one can check two things: first, there are no differentials

entering the p = 3 column. This means that π6S3 is an extension of Z/2 by Z/2 and that πS
3 is an extension of

that group by yet another Z/2. The second thing is that πS
3 = Z/8 forces the extension determining π6S3 to be

nontrivial, so that π6S3 =Z/4. This gives another group in the q = 2 row, E1
4,2, and the next stable diagonal ray.

35Kevin’s book again.
36Green book, VFOS
37Does the isomorphism πp S2 =πp S3 force the nonexistence of classes in the EHPSS q = 2 line? Or the existence of differentials?
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q

p
Z 0 0 0 0 0 0

0 Z Z/2 Z/2 Z/4 ? ?

0 0 Z Z/2 Z/2 Z/8 ?

0 0 0 Z Z/2 Z/2 Z/8

0 0 0 0 Z Z/2 Z/2

0 0 0 0 0 Z Z/2

0 0 0 0 0 0 Z

...
...

...
...

...
...

...

Z Z/2 Z/2 Z/8 ? ? ?

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

π1+∗S
1

π2+∗S
3

π3+∗S
5

π4+∗S
7

π5+∗S
9

π6+∗S
11

π7+∗S
13

1

2

3

4

5

6

7

0 1 2 3 4 5 6

2·

2·

2·

FIGURE 6. The EHPSS as understood in this discussion.

The story continues on from here; there’s even more structure in the EHPSS that we haven’t discussed that gives
access to, for instance, further differentials. It’s worth remarking on two extra things, apart from what we’ve talked
about so far. First is that we actually haven’t had to invoke homology computations at any point if we didn’t want
to. At the very beginning we used Hurewicz to computeπn Sn , but we could have instead used the Hopf fibration to
compute π2S2 =Z. This in turn forces π3S3 =Z in order for the EHPSS truncated at Q = 2 to converge to π2+∗S

2

correctly. Then, π3S3 = E1
1,2 lies in the stable range, which gives us the other classes we desired. The computation

of πS
3 answered an extension problem for us, and this is generally what the stable information is useful for, but

somehow all the classes are already present in the spectral sequence, waiting to be discovered.

5.5. The Serre finiteness theorem. The second remark is that we have made enough statements about the EHPSS
to prove the Serre finiteness theorem: all of (the 2-primary components of) the homotopy groups of spheres are
finitely generated, πn Sn and π4n−1S2n each contain a single infinite summand, and all other groups are torsion.
Noticing that differentials have destroyed all the infinite groups in the first stable diagonal by the E2-page, this
means that the feedback feature of the EHPSS we’ve been using to fill out the bottom rows will only draw from
extensions of the finite groups we’ve already calculated in the bottom-left. The only exception is the groupπ4n−1S2n ,
which appears when we truncate the spectral sequence across one of the d 1-differentials we calculated.

6. HOMEWORK: THE HOMOTOPY OF THE K(1)-LOCAL SPHERE

Last week we discussed the chromatic viewpoint of stable homotopy theory, and in the previous homework
reading we constructed the chromatic spectral sequence, used to compute the E2-page of the M U -Adams spectral
sequence. One thing we can do to understand how the figures in chromatic homotopy theory interact with each
other is to blank out large parts of the chromatic spectral sequence and play only with what’s left over. When we
set E p,q

1 = 0 for all q greater than some fixed q =Q, the result is called the homotopy of the “E(Q)-local sphere.”38

When we set E p,q
1 = 0 for every q other than q =Q, the result is called the homotopy of the “K(Q)-local sphere” [19,

38Cite the CSS for the E(Q)-ASS.
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Proposition 7.4]. Our goal in this reading is to compute the homotopy of the K(1)-local sphere, roughly following
Lurie’s method [24, Lecture 35].

There is a deep and mysterious theory called Bousfield localization that assigns actual homotopy types to these
groups so that we can do various spectrum-level manipulations, but we won’t have time to get into it. Instead, we
will just take the following two facts for granted:

• Chromatic fracture squares: There is a pullback square

LE(1)S LK(1)S

LE(0)S LE(0)LK(1)S.

In fact, replacing 1 with q and 0 with (q − 1), there is a fracture square for each q [24, Proposition 23.5].
• Arithmetic localization: There is an equivalence E(0) =HQ, and localization at HQ has the effect of tensor-

ing all homotopy groups withQ [46, Chapter 2].

The analysis of the homotopy of the E(1)-local sphere proceeds in phases. By far the most difficult is to compute
π∗LK(1)S, and by far the easiest is to compute π∗LE(0)S. We know that π∗LE(0)S agrees with the homotopy of the
rational sphere, and the full Serre finiteness theorem states that all the stable homotopy groups of spheres above πS

0
are torsion. Hence, we compute that it is Q concentrated in degree 0 and vanishing otherwise, and that part of the
work is finished.

To study the K(1)-local sphere via the truncated chromatic spectral sequence, we see that we’re tasked with
computing the (continuous) group cohomology H ∗(S1; (E1)∗). The deformation space (Eq )∗Z∧p¹u1, . . . , uq−1º[u

±]
specializes to give (E1)∗ = Z∧p[u

±]. The stabilizer group is less obvious; recall that Sq appears as the group of units
in the noncommutative polynomial ring

Oq =WFpq 〈S〉/
�

Sw = wφS,
Sq = p

�

.

In the case that q = 1, we’re left with S1 = GmZ∧p . Then, (E1)∗ is made into an S1-module by the action g ·
ud = g d ud for g ∈ S1 and ud ∈ (E1)∗. If we restrict attention to a prime p > 2, then there is a splitting S1 =
Cp−1×Z∧p , consisting of the (p − 1)t h roots of unity and those p-adic units for which a logarithm exists. Using the
Lyndon-Hochschild-Serre spectral sequence [49, 6.8.2], we can then split this into two problems: first we compute
H ∗(Cp−1;Z∧p[u

±]), and then we compute H ∗(Z∧p ;−) of the result. The first of these tasks is easy: because (p − 1)
and p are coprime [49, Theorem 6.2.2],

H ∗(Cp−1;Z∧p[u
±]) =H 0(Cp−1;Z∧p[u

±]) = (Z∧p [u
±])Cp−1 =Z∧p[u

±(p−1)] =A.

Next, we compute H ∗(Z∧p ;A). Because we’re computing the continuous group cohomology, it’s OK39 to consider
the cohomology against the dense subgroup Z= 〈γ 〉 for a topological generator, like γ = 1+ p. Having reduced to
computing some group cohomology of Z, we are really just interested in the long exact sequence40

· · · →An
γ−1
−→An→H n(Z∧p ;A)→ ·· · .

39??
40Embed this into the main text. How can you cite it? The easiest way to see this resolution is by identifying R as a model for the

contractible space EZ, with cell structure given by EZ(0) = Z and EZ(1) = R. Accordingly, we’re interested in attaching a copy of A∗ to each

point in EZ(0), mapping An at the point m to the An at (m+ 1) by An
γ−1
−−→An , and taking a cofiber to compute the group cohomology.
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This reduces our remaining task to computing the action of γ − 1 on ud (p−1) for varying d . To save time on
arithmetic, I’ll just tell you:

γ · ud (p−1)− ud (p−1) =







0 for d = 0,

wd d p · ud (p−1) for d 6= 0, where wd is some unit wd ∈ ĜmZ∧p .

41 Since the Lyndon-Hochschild-Serre spectral sequence is concentrated in p = 0, there are no differentials, and
this gives H ∗(S1; (E1)∗). In turn, there are also no differentials in the Adams spectral sequence for degree reasons,
yielding the description

πi LK(1)S=











Z∧p , i =−1,0,

Z∧p/(k p), i = 2k(p − 1)− 1 for k ∈Z \ {0},
0 otherwise.

To finish the computation, we compute the corner piece, which is the rationalization of these groups:

πi LE(0)LK(1)S=Q⊗πi LK(1)S=
(

Qp , i =−1,0,

0 otherwise.

Finally, to compute the E(1)-local homotopy, we must compute the homotopy of a fiber product of spaces, inducing
a Mayer-Vietoris long exact sequence on homotopy groups. In the end, this yields

πi LE(1)S=



















Qp/Z∧p =Z/p∞, i =−2,

Q∩Z∧p =Z(p), i = 0,

Zp/(k p), i = 2k(p − 1)− 1 for k ∈Z \ {0},
0 otherwise.

You can see a couple things emerge in this answer. The first is that previously we had π0LE(0)S=Q, which didn’t
agree with the true stable 0-stem πS

0 . Now, by passing to the E(1)-local sphere, we’ve fixed that: we found that its
0th homotopy group is instead Z(p), just as we’d desire of the p-local sphere. On the other hand, you can also see
essentially all the other groups, while following a nice pattern, are incorrect and do not agree with the stable stems.
It turns out that this is a general fact: there is a radius around the 0-stem for which the E(q)-local sphere agrees
with the actual stable stems, which is both finite and monotonically increasing with q . This goes by the name of
chromatic convergence [37, Theorem 7.5.7].

As a closing remark, the K(2)-local sphere is substantially more complicated, as the stabilizer group S2 and the
module (E2)∗ are both so much larger. By incredible force of will, this was accomplished in the ’90s by Shimomura
and collaborators, though just recently Mark Behrens has been making a substantial effort to understand and clarify
their brutally difficult work. Uninformed computations for q > 2 will almost certainly be impossible for humans
to carry out.

Mention the J -homomorphism appearing as the image of π∗S→π∗LK(1)S.

7. DAY 4: HINTS AT GLOBALIZATION

At this point, we’ve pretty much introduced all the well-understood parts of this story. What people are working
on now is a way to make the rest of the computations we know about fit together into a coherent picture, meaning
we would like to take small special cases we know about and somehow globalize them.

41State the resulting cohomology H ∗ (Z∧p ;A) before talking about the spectral sequence?
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7.1. Filtering the Steenrod algebra. Trying to understand K -theory is really where all of this exotic topology
business got started, and each time we see a pattern we’re trying to generalize, K -theory is an example of the bottom
nontrivial case. So, in approaches to globalization that we’ll discuss, we’ll first analyze the K -theory case and then
wander outward from there.

Let’s first return to the HF2-Adams spectral sequence, which you’ll recall takes as input the stack cohomology
of MHF2

against the structure sheaf F2. The reason this cohomology is so enormous is because the action on
the structure sheaf is extremely non-free. At the other extreme, the sheaf H F2(HF2) carries a free action, and
accordingly its higher stack cohomology vanishes. It would be nice to interpolate between these two endpoints
with spectra Xn whose sheavesH F2(Xn) carry an action that becomes gradually less free in a controlled way.

Specifically, we can define a sequence of quotient algebrasA (n)∗ of the dual Steenrod algebraA∗ by imposing
the minimal set of relations to ensure that the power series it classifies are of degree at most 2n+1. For example,

A (0)∗ =A∗/〈ξ
2

1 ,ξ2,ξ3, . . .〉,

A (1)∗ =A∗/〈ξ
4

1 ,ξ 2
2 ,ξ3,ξ4, . . .〉.

We define the Hopf algebra quotient [47, pg. 497] by the formula

A∗//A (n)∗ =A∗⊗A (n)∗ k .

There is a “change-of-rings” isomorphism [47, Theorem 19.7]

Ext∗,∗A∗(k ,A∗//A (n)∗) = Ext∗,∗A (n)∗
(k , k),

meaning that the sheafA∗//A (n)∗ is exactly what we were after: it has a free part that swallows part of the stack
cohomology and an utterly non-free part that lets some of it escape through.

With this in mind, we might set out on a program to construct spectra Xn realizingH F2(Xn) =A∗//A (n)∗.
It turns out that picking X0 = HZ(2) givesH F2(X0) =A∗//A (0)∗ [41], and picking X1 = ko givesH F2(X1) =
A∗//A (1)∗ [43]. The interesting spectrum tmf , which we’ll discuss more in a moment, further turns out to be an
example of an X2,42 indicating that there is some a real pattern to pursue. Unfortunately, there is also a nonexistence
result: Xn does not exist as described for n ≥ 3.43,44

Problems: What is the correct weakening so that Xn does exist for n ≥ 3? Even if Xn can’t exist, what if we
pretended it did — what are some interesting features of H ∗(MHF2

;H F2(X3))?

7.2. Integrality. Ordinary K -theory also motivates the spectra K(q) and Eq seen in the chromatic picture, a con-
nection which up until now we’ve ignored. To pin down the relation, let’s first write down the coefficient rings of
these theories: the homotopy groups of E1 are given by π∗E1 =Z∧p[u

±]with |u|= 2 p−2, whereas π∗KU =Z[β±]
with |β|= 2. At a glance the homotopy of KU appears much denser than that of E1. It turns out that they are very
nearly the same: after p-completing KU , there is a multiplicative splitting KU∧p '

∨p−1
n=1Σ

2n E1. There is a similar

splitting for mod- p K -theory: KU/p '
∨p−1

n=1Σ
2nK(1).45

This indicates how we should think of these spectra: K(1) is the residue field of E1, and KU is an integral object
which p-completes to the special case of E1. It is easiest to understand the sort of globalization going on here in
terms of the SpecFiniteSpectra picture: we stratified the spectrum according to primes and to height. We have these
spectra E(∞) = BP which capture all the heights at a particular prime — it covers the information in one of the
columns in the grid. On the other hand, KU captures only the information at height 1, but it does so for all primes
simultaneously — it covers the information in one of the rows.

So, to generalize, one could ask what ring spectrum Xn has an integral ground ring and which splits upon p-
completion to a wedge of suspensions of En . It turns out that we have recently produced a candidate for n = 2,
called topological modular forms and written TMF . The algebraic geometry underlying this spectrum arises when

42...Hopkins?
43This is remark 7.50, pg. 89, of Rognes’ Notes on the Adams Spectral Sequence.
44Somewhere in this section we should cite Henriques’ drawing as an example of the relative computational complexity of n = 2 vs n = 1.
45These are Landweber flat, so don’t require much of a proof. Where can you find this?

21



considering elliptic curves which are allowed to have nodal degeneracies. The identity on such an elliptic curve is
always a smooth point, and its formal completion yields a formal Lie group of height 1 or 2.46 In turn, the moduli of
such elliptic curves has nice properties from the view of formal groups, with height 1 and 2 information appearing,
and also from the view of algebraic geometry, since the objects it classifies are projective varieties.

Lifting this business into topology requires quite a lot of work [25]. Consider the moduli of elliptic curvesMell,
and let Spec R→Mell be a flat map, i.e., a point in the flat topology. One can check that the mapMell→Mfg is a
flat map, and so the pullback ofMU (X ) to Spec R defines a cohomology theory called “elliptic cohomology (on
R with respect to the chosen curve).” IdentifyingMell with its étale site, this gives a map

HomologyTheories Rings

Mell.

π0

O

The Goerss-Hopkins-Miller [10, 39] theorem constructs E∞-models for the Morava E -theories. We can apply this
theorem to sufficiently small points inMell to produce a local lift

E∞-RingSpectra HomologyTheories Rings

Mell.

π0

OOt o p

Finally, the whole purpose of Lurie’s work on derived algebraic geometry [26, 23, ...] is to define what it means to
sheafify this locally-defined presheaf of E∞-ring spectra. The core difficulty is that it is not homotopically reasonable
to request that sections of such sheaves patch merely when their overlaps are strictly equal; instead, we should learn
to tolerate that they are merely homotopic. In the end, his program is meant to produce a lift

E∞-RingSpectra HomologyTheories Rings

Mell.

π0

OO †
t o p

Finally, taking global sections of the sheaf O †
t o p yields a ring spectrum called TMF .47

But, once again, for n ≥ 3 we run out of candidates for Xn — the trouble this time is that there are no 1-
dimensional abelian varieties of height greater than 2.48 Recent work of Behrens and Lawson [7] have used polarized
Shimura varieties to produce an example of an integral higher height theory, called TAF for “topological automor-
phic forms.” Shimura varieties are higher dimensional abelian varieties, and polarization tags them with additional
structure that allows us to canonically split off a 1-dimensional subgroup from their completion at the identity.49

Little has been done with this new theory, but it’s promising that it exists at all.
Problems: Make computations with TAF. Make computations with TMF , for that matter. There are also loads of

problems to solve about Lurie’s underlying machine that produces TMF . One could also offer alternative approaches
to the problem by finding sources of 1-dimensional formal Lie groups other than polarized Shimura varieties; it’s
not clear that this is the right approach to take, or that the choices made in its construction are sane ones. Szymik
has done interesting work in this last direction [48].

46?
47TMF is so-named because TMF∗[

1
6 ] is isomorphic to the ring of modular forms.

48?
49?
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FIGURE 7. The homotopy fixed point spectral sequence for KO. Squares indicate Z, dots indicate Z/2.

7.3. Equivariance. Spectra in general are very difficult objects to control, and ring spectra aren’t too much more
rigid than that — their study contains at least all of classical ring theory, for instance. To find footholds in stable
homotopy theory, we spend a lot of effort trying to produce rigid structures, and one example of a particularly rigid
structure is an equivariant spectrum. The definition underlying an equivariant spectrum is intricate, but the upshot
of the program is that you end up with spectra X carrying G-actions in a way that you can produce fixed-point
spectra X hG and orbit spectra XhG , along with all the niceties like spectral sequences comparing the fixed points of
their homotopy groups to the homotopy groups of their fixed points [40].

Most of our examples of equivariant spectra come directly from geometry: for instance, the C2-action on complex
vector bundles by complex conjugation rigidifies to make KU into a C2-equivariant spectrum. You might guess that
KU hC2 , the fixed points of the conjugation action, is KO, in the same way that the fixed points of the conjugation
action on complex vector bundles are exactly the complexified real vector bundles. This turns out to be true,
and while a proof is beyond the scope of this discussion, it’s instructive to draw the spectral sequence computing
π∗KU hC2 , pictured in figure 7. Also worth mentioning is the nonequivalence kU hC2 6' kO, visible in the same
picture.

Previously, we have discussed the action of the Morava stabilizer group Sn on the sheaf En(X ). This action lifts
directly into the world of homotopy theory, via the Goerss-Hopkins-Miller [10, 39] theorem: the spectrum En is
equivariant against an action of Sn inducing this action on the level of homotopy groups. There are three further
beautiful theorems:

(1) The appearance of group cohomology in the chromatic spectral sequence and the realization of En as an
Sn -equivariant spectrum are not coincidences. There is an equivalence E hSn

n ' LK(n)S [8, Proposition 7.1].
(2) Just as we can produce KO from KU as the fixed points of C2, we can produce LK(2)TMF from E2 by taking

fixed points against a maximal finite subgroup of S2.50

(3) For the last, S1 contains only the p-adic units, whereas Sn for n > 1 contains many more elements in
addition to a subgroup of p-adic units. There is a certain projection map det : Sn→Z×p , the kernel of which

is denoted SSn , and the fixed point spectrum E hSSn
n plays the role of a K -theory spectrum in the K(n)-local

category: for example, it carries an analogue of the image of J [?].

Many of these facts have globalization built into them: they hold for each n. So, we can define many spectra in
the vein of KU , KO, and TMF by taking n ≥ 3 and investigating what appears. In particular, the fixed points of
En against a maximal finite subgroup of Sn is denoted EOn , the nth higher real K -theory spectrum. [17, Section

50Talk about 1) the relationship to actual real K -theory, and 2) this approximation the K(n)-local sphere.
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1]51 These spectra are of immense interest, both for chromatic homotopy theory proper and for applications —
for instance, the Kervaire invariant problem was recently solved [16], and the proof arose not from seeking out
information about the Kervaire classes but by accident during an attempt to compute things about the homotopy
of eon . (This last bit is unpublished, but see Hill’s thesis [?] or the Hopkins-Mahowald note [17] for related
computations.)

In a completely different direction, there is a program connecting height n phenomena for a space X to height
(n− 1) phenomena in the free loopspace LX , which carries an S1-action by loop rotation. This manifests in at least
two ways:

(1) The “chromatic redshift” conjecture attempts to connect algebraic K -theory to chromatic homotopy theory
through topological Hochschild homology. For a space X and E∞-ring spectrum E , one can build the tensor
X ∧ E , and topological Hochschild homology is defined by S1 ⊗ E .52 The conjecture, more or less, states
that K(En) ≈ En+1. The name comes from increasing the periodicity length (from |vn | = 2(pn − 1) to
|vn+1|= 2(pn+1− 1)), so “redshifting.” [1, Section 4]53

(2) The Atiyah-Segal completion theorem states that for G-equivariant K -theory, the map K∗G(pt)→K∗(BG) is
a completion. In the specific case of G = S1, K∗G(pt) =Z[u±] is the ring of functions on the algebraic variety
Gm , and the map is the inclusion Ĝm→Gm .54 One would like a similar construction of equivariant elliptic
cohomology, so that E``∗S1(pt) is the elliptic curve one completes to get BU (1)E`` [4]. A main problem here
is that an elliptic curve is a projective variety, and so has no global functions, but there is a construction that
gets around this by building a sheaf-valued equivariant elliptic cohomology [11]. This construction works
by locally defining the sheaf to be ordinary S1-equivariant cohomology, then using the isomorphism of
complex elliptic curves to S1× S1 to incorporate the information in the elliptic curve into the gluing twists.

(3) Stolz-Teichner55

In yet another a completely different direction, a program has recently begun to study spectra which are equi-
variant against all compact Lie groups simultaneously in a compatible way. Many geometrically constructed spectra
can be constructed carefully enough to have such a structure, providing many examples of so-called “global spec-
tra.”56 One of the most intriguing artifacts of this approach is that distinct constructions of geometric spectra which
once yielded the same nonequivariant homotopy type now produce distinct global spectra — this is something not
previously visible that is sure to tell us something new and interesting.57

Problems: What can be computed about the homotopy of the spectra EOn , or their values on various interesting
inputs? What other objects familiar from the ordinary stable category have “determinantal analogues,” like E hSSn

n
for KU ? Any information about algebraic K -theory would be helpful; the results we know of are very difficult
and connect very important objects, and conceptual explanations would be immensely useful. Can Grojnowski’s
construction be generalized to produce cohomology theories of heights higher than 2? What versions of globally
equivariant geometric spectra enjoy which properties? We have understood the nonequivariant stable category
through M U and formal groups; what tools are appropriate for understanding the equivariant stable category?

7.4. Postnikov tower for bordism. You’ll recall that ordinary singular homology is constructed by studying the
continuous maps from n-simplices into a space, modulo those collections of simplices which appear as the hull of
an (n + 1)-simplex. It is very natural to ask what happens when you replace simplices with some other geometric
object instead; using manifolds results in a theory called bordism. Specifically, continuous maps from some closed n-
manifold to the space replace continuous maps from n-simplices in, and continuous maps from a non-closed (n+1)-
manifold with boundary a collection of closed n-manifolds replace the hulls of (n + 1)-simplices. The resulting
functor is a homology theory called M O∗, and its coefficients are the unoriented bordism ring [47, Chapter 12].

51There ought to be a better Hopkins-Miller reference, but they haven’t published their original work.
52For an A∞-ring, it’s defined as E ∧E∧E o p E , and then this description for E∞-rings comes from the pushout diagram for S1 =ΣS0.
53Aaron suggests talking about blueshift as well: “the Tate spectrum of a vn -periodic spectrum should be vn−1-periodic.”
54Lurie survey
55Aaron says the draw of S-T is that it connects the dimension filtration to the height filtration.
56May, Schwede
57Schwede

24



M O M SO M S pi n M St r i n g · · · S

HZ/2 HZ KO TMF · · ·

FIGURE 8. The bordism tower

The first thing to notice about bordism is that the unoriented setting is very uninteresting: for an unoriented
closed manifold M , the manifold M × I induces the relation M +M = 0 in the bordism ring, making M O∗ a Z/2-
algebra [47, Example 12.24.1]. This statement turns out to be very strong: there is a map M O → HZ/2 of ring
spectra detecting the bordism class of a point, this map turns out to be a split surjection, and it induces a splitting
M O '

∨

Σ∗HZ/2 [47, Theorem 20.8]. This means that, as far as stable homotopy is concerned, M O contains no
information not already present in HZ/2.

There are two ways to liven this construction up, both of which involve putting extra structure on the manifolds
involved [47, Definition 12.19]. The easiest thing to do is to request that the tangent bundle of the n-manifold carry
an action not just by O(n) but by Gn for some sequence of groups Gn with compatible maps Gn →O(n). For in-
stance, An almost-complex structure on the tangent bundle corresponds to a (stable) action by the group of unitary
matrices, yielding the bordism theory M U we’ve been studying all along. The other method of generalization is
more subtle: you can impose certain conditions on the characteristic classes of the tangent bundle of the manifold.
For instance, M SO is the bordism theory for which the first Stiefel-Whitney class of the tangent bundle vanishes.58

The most extreme version of this is for the manifolds to vary a stable framing, yielding a bordism theory weakly
equivalent to S, the stable sphere.

Interpreting S as a sort of bordism theory casts the data of a ring spectrum in a new light: the image of the unit
map η : S→ E corresponds to the invariants of framed manifolds which are detectable by E -theory. People running
with this idea uncovered something surprising about the most familiar unit maps: they factor through the bottom
layers of the bordism tower as in Figure 8. For examples of the sort of data these capture, the map M O → HZ/2
induces a genus M O∗ → HZ/2∗ counting the number of unoriented isolated points in a manifold. This map lifts
to M SO → HZ inducing a genus M SO∗→ HZ∗ counting the number of oriented isolated points with sign.59 The
next two genera further refine these maps; for instance, if the first and second class both vanish, then the manifold
admits a S pi n structure, making it a point in M S pi n, and there is a map M S pi n → KO, called the Atiyah-Bott-
Shapiro60 orientation, or Â-genus. This bordism theory and its associated genus become important in the context
of Atiyah-Singer index theory61, which connects the value of the Â-genus62 to certain analytical properties of the
Dirac operator, a square-root of the Laplacian differential operator on the manifold. This is an enormously deep
theorem that connects two very different sorts of geometry: homotopy theory and analysis on manifolds.

It would be nice to be able to continue this story as well, and we have produced a partial generalization to height
2 cohomology. Namely, there is bordism theory M St r i n g arising from those S pi n-manifolds whose next Stiefel-
Whitney class also vanishes, along with a map called the Witten genus M St r i n g∗[

1
6]→ TMF∗[

1
6].

63 This genus has
been shown to enrich to a map of spectra M St r i n g → TMF which connects a large part of both of their homotopy
groups [2, 3]. No higher height analogue of the index theorem is presently known, largely because of our lack of
understanding of the geometry of TMF ; bridging this gap is one of the goals of the Stolz-Teichner program [?]. Little
is known about higher height genera as well; requiring the next Stiefel-Whitney class to vanish does not appear to
be the right move, and so we’re missing both a higher height source to replace M St r i n g and a higher height target
to replace TMF .

58?
59?
60ABS, MO question cites a thesis
61AS papers
62Miller
63Witten
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Problems: Produce higher height candidates for replacing M St r i n g , say M Xn , and TMF , say Yn . Produce genera
M Xn → Yn . Produce a map M St r i n g → EO2, to help connect TMF to EO2. Find geometric models for Yn ,
beginning with TMF . The bordism spectra also support E∞ structures, as do our targets KO and TMF , and another
goal is to check that these orientations are E∞-maps [5]. If this is true, we would also like higher order results for
M Xn→ Yn for n ≥ 3.

8. HOMEWORK: THE ALGEBRAIC GEOMETRY OF SPACES

In closing, I wanted to make mention that we’ve only been using half of the algebraic geometry available to us.
This observation is not directly related to globalization, but it’s useful to be introduced to this other side. For a
space or spectrum X , let XE denote the scheme Spf E∗X . So far, we’ve only shown interest in the ground scheme SE
and in the group “GE ”=CP∞E . Of course, no matter what space X we give to cohomology, we’ll get a ring E∗X in
return, and so the geometry of affine schemes has the potential to tell us about a lot of other spaces. Knowing this
dictionary between spaces and schemes is very useful for building intuition, so what follows is a partial list of the
known correspondences. Working out some of these on your own is an excellent exercise; most of the computations
are quite classical, but fitting them into the algebro-geometric framework takes some thought.64,65

• Throughout, we’ll concern ourselves with complex orientable spectra E . This means that BU (1)E =GE is
a formal Lie group G.
• The computation of HZ∗BU (n) as generated by symmetric polynomials in HZ∗BU (1) generalizes to a

computation for any complex oriented E . On the level of schemes, this means BU (n)E is the scheme
Div+n GE of positive divisors of degree n on GE .
• Just as the spaces BU (n) assemble into a directed system by including block matrices into the top-left

components, so do these formal schemes. Taking a colimit shows that BUE is the scheme Div0 G of divisors
on G of weight 0. This also gives a description of KU 0 = Z× BU : the Z factor counts divisor weight, so
(Z×BU )E =DivG.
• There is a map BU (1)→ BS p(1) corresponding to symplectification of complex line bundles. Analysis of

this map shows that BS p(1)E = fib[(GE ×GE )Σ2
→ GE]. Correspondingly, E∗BS p is the free symmetric

algebra on E∗BS p(1), so BS pE =Div0 BS p(1)E . The space BO also fits into this framework: BOE = BUχ
E

is the fixed-points of BU under the C2-action given by complex conjugation.
• The quotient Z/n → S1 ·n−→ S1 yields a fiber bundle, and delooping it once gives a fiber bundle BZ/n →

BU (1)→ BU (1). In many cases, this can be shown to induce a short exact sequence of group schemes, so
that BZ/nE appears as the n-torsion GE[n] of GE . This gives an interpretation of BAE for any finite abelian
group A: it is the mapping scheme Maps(A,GE ). It turns out that there is also a theory explaining BGE for
nonabelian groups G, called Hopkins-Kuhn-Ravenel character theory, but it is much more complex.
• Following on from our discussion on the first day, Hopf ring methods can be used to show that (HZ/nq )K(r )

is the qth alternating power of the n-torsion (BZ/n)K(r ) = GK(r )[n] for each Morava K -theory (including
K(∞) = HFp ). For 0 < r <∞, the scheme of n-torsion is finite, which means that (HZ/nq )K(r ) vanishes
for large enough q . This has several interesting consequences.
• We discussed the filtration of BU by BU (n), but Bott periodicity states that BU is equivalent to ΩSU ,

which carries its own filtration by ΩSU (n). The scheme CPn
E corresponds to the divisor of nth order

points, and since E∗ΩSU (n) is the free symmetric algebra on E∗CPn , the scheme ΩSU (n)E is the “free
group-scheme” on the divisor CPn

E . In turn, S2n
E is the quotient CPn

E/CPn−1
E , and ΩS2n+1 is the free group-

scheme on S2n
E .

• Lastly, if X is an H -space with E∗X torsion-free, then X E = Spec E∗X satisfies X E =Hom(XE ,Gm). Using
this, various homology-schemes for BU and so on can be determined as certain sorts of mapping spaces.
The most interesting is that M U E is the subscheme of functions BU (1)E → Â1 which are coordinates, i.e.,

64Sort through FSFG, FPFP, Wilson, HKR, and RW for references.
65We may want to include a discussion of the scheme of subgroups, (BΣpn )E , and power operations. If so, cite Strickland and Matt’s thesis.
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isomorphisms of formal schemes. In turn, for another complex-oriented spectrum F , F E can sometimes be
expressed as the scheme of isomorphisms Iso(GE ,GF ).

Problems: What sort of formal supergeometry appears when E∗X is not even-concentrated? Can we produce
examples of spaces that have a description in this language which do not come from a connection to CP∞?
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