There are 10 questions. Each question is worth 3 marks. Show your work.

1. Find an equation of the line tangent to the curve $y=\frac{2 e^{x}}{x}$ at the point $\left(2, e^{2}\right)$.
2. The size $P(t)$ of a bacterial population is assumed to grow exponentially as a function of time $t$. Given that $P(0)=0.1$ and $P(2)=3.2$, find an equation for $P(t)$.
3. Differentiate $x^{\sinh (x)}$.
4. Show that the equation $e^{x}=5-x^{2}$ has exactly 2 solutions.
5. Use differentials or a linear approximation to estimate $\sqrt[3]{7.7}$.
6. Find the 29th derivative of $e^{-3 x}$.
7. Find the absolute maximum and minimum values (and where they are attained) of

$$
f(x)=x^{5}-5 x+5
$$

on the interval $[0,2]$.
8. Find $\lim _{x \rightarrow 0} \frac{\sec x-1}{x^{2}}$.
9. Sketch the curve $y^{3}=x^{2}-1$.
10. Sketch the curve $y=e^{x^{3}-3 x^{2}}$.

